

MultiJoint System and Individual Plate Dowels

Ancon MultiJoint is an all-in-one solution to load transfer, concrete contraction, armoured edge protection and formwork. It is designed for use at joints in ground bearing slabs and is ideal for factories and distribution centres. Individual rectangular plate dowels housed in innovative, high strength plastic, tapered sleeves are also available.

Lockable Dowels

Ancon Lockable Dowels have been designed for use at temporary movement joints in post-tensioned concrete construction. The Lockable Dowel allows initial shrinkage of the concrete to take place and is then locked in position with epoxy resin. These dowels eliminate the need for pour strips and significantly increase the rate of construction.

Ancon designs and manufactures high integrity steel products for the construction industry. Through continuous programmes of new product development, inward investment and employee advancement, the company is committed to maintaining the highest level of customer service within a dynamic and challenging industry.

Reinforced concrete is an important construction material. It offers strength, durability and can be formed into a variety of shapes. Concrete structures are designed with expansion and contraction joints at appropriate places to allow movement to take place. The design of the joint is important for the overall design to function correctly.

Ancon shear load connectors offer significant advantages over plain dowels.

Masonry Support Systems
Lintels
Masonry Reinforcement
Windposts and Parapet Posts
Wall Ties and Restraint Fixings
Channel and Bolt Fixings
Tension and Compression Systems
Insulated Balcony Connectors

Dowelled & Keyed Joints	4
Ancon Solutions to Joints	5
Ancon Shear Connector Range	6-7
Installation Procedure	8
Design Capacities	9
DSD and DSDQ Connectors	10-14
ESD, ESDQ, ED	
and Acoustic Connectors	15-18
Applications	19
Other Ancon Products	19

Shear Load Connectors

Punching Shear Reinforcement
Reinforcing Bar Couplers
Reinforcement Continuity Systems
Stainless Steel Fabrications
Flooring and Formed Sections
Refractory Fixings

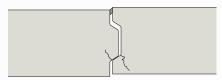
BIM objects of Ancon products are now available to download from either www.ancon.co.uk/BIM or the NBS National BIM Library.

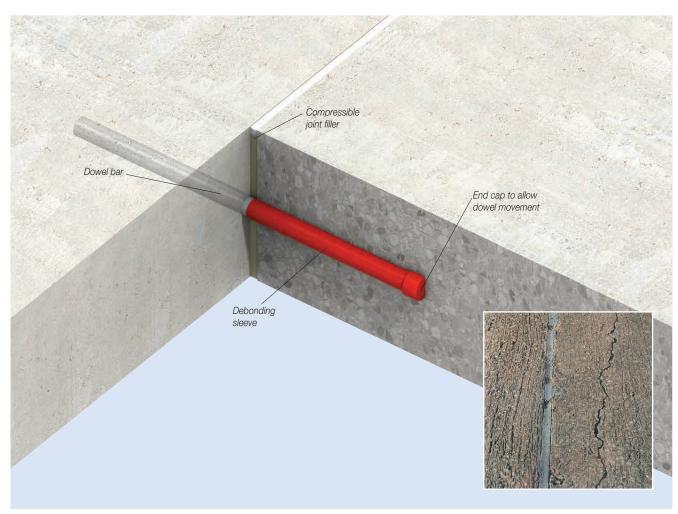
DOWELLED JOINTS

Dowels are used to transfer shear across construction and movement joints in concrete. They are often either cast or drilled into the concrete. A single row of short thick dowels provides reasonable shear transfer but suffers from deformation. This can lead to stress concentrations, resulting in subsequent spalling of the concrete.

Where dowels are used across expansion and contraction joints, half the length of the bar is debonded to allow movement to take place.

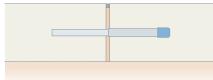
Dowelled joints either require formwork to be drilled for the dowels to pass through, or concrete to be drilled for dowels to be resin fixed in one side.


At movement joints, dowels will need to be accurately aligned in both directions to ensure movement can actually take place, otherwise cracking is likely to occur.


Plain dowels are not very effective when used across joints wider than 10mm.

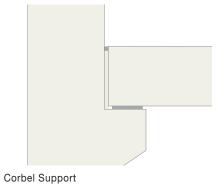

KEYED JOINTS

Keyed joints require complicated formwork to create the tongue and groove. If the joint is not formed correctly, differential movement can take place. Load is transferred through the locally reduced section of the joint which can at times result in cracking.

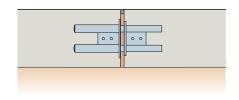


Misaligned dowels can result in cracking away from the expansion joint

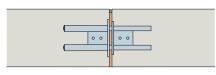
Wall

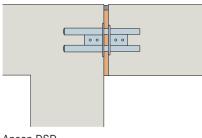

Keyed Joint

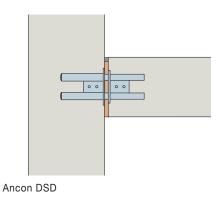
Structural Movement Joint



Double Columns


Floor to Wall Connection


Ancon Solutions


Ancon DSD

Ancon DSD

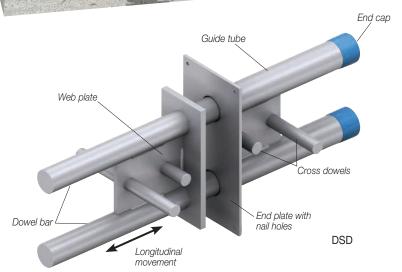
Ancon DSD

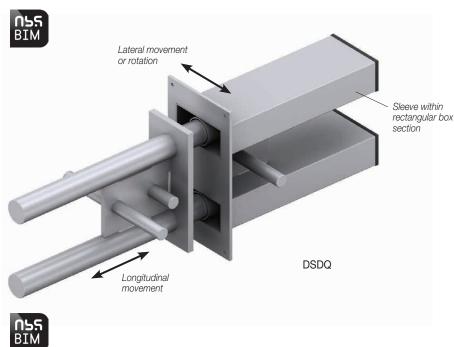
ANCON SOLUTIONS TO JOINTS

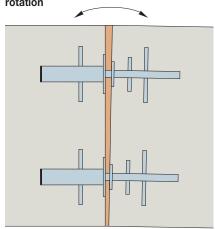
In most cases dowelled or keyed joints can be replaced by joints incorporating Ancon shear load connectors. These connectors are more effective at transferring load and allowing movement to take place, easier to fix on site and can prove a more cost-effective solution.

Ancon connectors can be used for movement joints in floor slabs, suspended slabs, and for replacing double columns and beams at structural movement joints. Applications in civil engineering include joints in bridge parapets, bridge abutments and diaphragm wall construction.

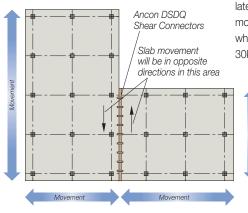
Comparison of Performance with Plain Dowels


400mm Thick Slab with Joint Width of 20mm	One Ancon DSD130	Six 32mm Dia Dowel Bars
Dowel Diameters mm	2 x 35	6 x 32
Area of Dowels mm ²	1924	4825
Design Resistance kN	202.5	197.5


1 Ancon DSD 130 Design Resistance 202.5kN


6 Dowel Bars 32mm Diameter Design Resistance 197.5kN

0	0	0
0	0	0



Ancon DSDQ Shear Connectors allowing rotation

Ancon DSDQ Shear Connectors allowing movement in two directions

ANCON SHEAR LOAD CONNECTORS

The DSD range of connectors offers significant advantages over plain dowels. Each connector is a two-part assembly comprising a sleeve and a dowel component. Installation is a fast and accurate process, drilling of either formwork or concrete is not required. The sleeve is simply nailed to the formwork ensuring subsequent alignment with the dowel, essential for effective movement.

They are manufactured from stainless steel to ensure a high degree of corrosion resistance with no requirement for additional protection.

Free software is available from Ancon that simplifies the design of movement joints in reinforced concrete. For a given application, Ancon's design program will calculate the size and quantity of shear load connectors required, the edge distance and spacings at which they should be installed, and details of the local reinforcement.

Ancon DSD

The Ancon DSD is the original two-part, double dowel, shear load connector. The two dowels are Duplex stainless steel bar. The dowel component can move longitudinally within the sleeve to accommodate movement. The connector is available in ten standard sizes and has design resistances from around 20kN to over 950kN. The larger connectors can be used in joints up to 60mm wide. Larger joints can be accommodated using special dowels. Please contact Ancon's Technical Department for further information.

Ancon DSDQ

The Ancon DSDQ shear load connector uses the same dowel component as the Ancon DSD, but the cylindrical sleeve is contained within a rectangular box section to allow lateral movement in addition to the longitudinal movement. There are nine standard sizes which have design resistances from around 30kN to over 950kN.

Building Information Modelling

BIM objects of the Ancon DSD and DSDQ are available from www.ancon.co.uk/BIM

Plan

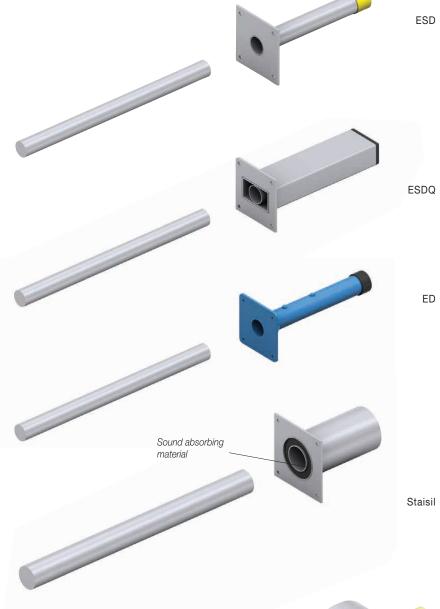
6

A range of stainless steel single dowel shear connectors is also available.

Ancon ESD

The Ancon ESD shear load connector is used where loads are small, but where alignment is critical. It is available in four sizes with each size available in two lengths. The dowel component is Duplex stainless steel bar.

Ancon ESDQ

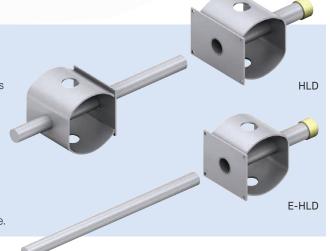

The Ancon ESDQ shear load connector uses the same dowel as the ESD, but the cylindrical sleeve is contained within a rectangular box section to allow lateral movement or rotation in addition to longitudinal movement.

Ancon ED

The Ancon ED is a low cost dowel connector for use in floor slabs where alignment is important but loads are small. The single dowel shear connector is available in four sizes with each size available in two lengths. The sleeve component is made from a durable plastic and features an integral nail plate. The dowel component is Duplex stainless steel.

Ancon Staisil

The Ancon Staisil acoustic connector is designed to transfer shear loads and limit sound transmission across joints in concrete. The sleeve has Elastomer sound absorbing material between two stainless steel tubes and a nail plate for fixing to formwork. The sound transmission properties are generally unaffected by either joint width or service load. Tests in the frequency range of 100 - 3150 Hz have shown a reduction in sound transmission of 20dB. When the standard solid dowel was replaced by an antivibration dowel a reduction of 25dB was recorded.



Ancon HLD/HLDQ

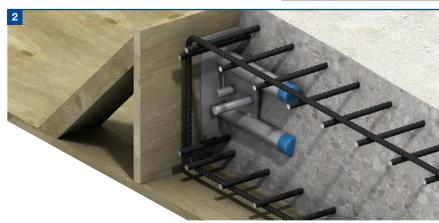
The Ancon HLD is a two-part, high load, shear connector for thinner slabs outside the application of the DSD range. The connector is available in seven sizes with design resistances from 24kN to over 500kN. The larger connectors can be used in joints up to 60mm wide.

Ancon E-HLD

The Ancon E-HLD joins new concrete slabs to existing concrete walls and comprises a stainless steel dowel and a high strength, stainless steel sleeve. It is designed to transfer shear load where new slabs are connected to diaphragm walls or secant pile walls in basement construction. The dowel component is resin-fixed into the wall. It is available in seven standard sizes and can be used in a slab thickness from 160mm and joints up to 60mm wide.



INSTALLATION PROCEDURE

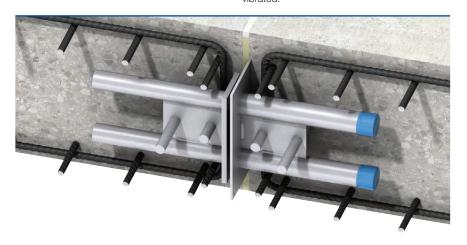

The two-part assembly of all Ancon shear connectors removes the need for drilling formwork on site, supporting dowel bars and fitting debonding sleeves and end caps. The installation is a fast and accurate process.

Direction of load

Nail the sleeve component to the shuttering ensuring that the sleeve is correctly orientated for the direction of the load. Check that the minimum spacing and edge distances are not exceeded. The label prevents debris from entering into the sleeve aperture and should not be removed at this stage.

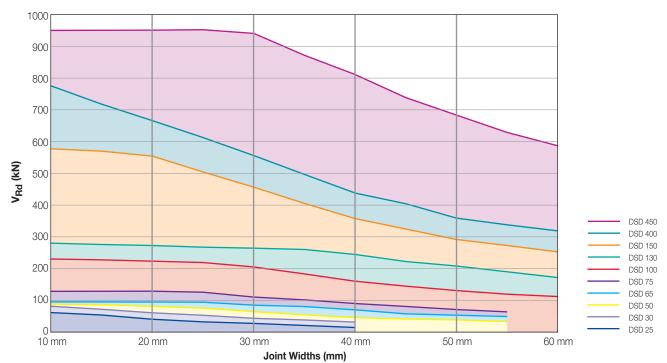
Fix the local reinforcement in position around the sleeve component together with any other reinforcement that is required, ensuring that the correct cover to the reinforcement is maintained. Pour the concrete to complete the installation of the sleeve component.

When the concrete has achieved sufficient strength, strike the shuttering. Peel off or puncture the label to reveal the holes for the dowels. Where 'Q' versions are being used, the label should only be punctured enough to allow the dowel into the cylindrical sleeve to prevent debris entering the box section.


Position compressible joint filler of the appropriate width, for applications where movement is expected between the two sections of concrete.

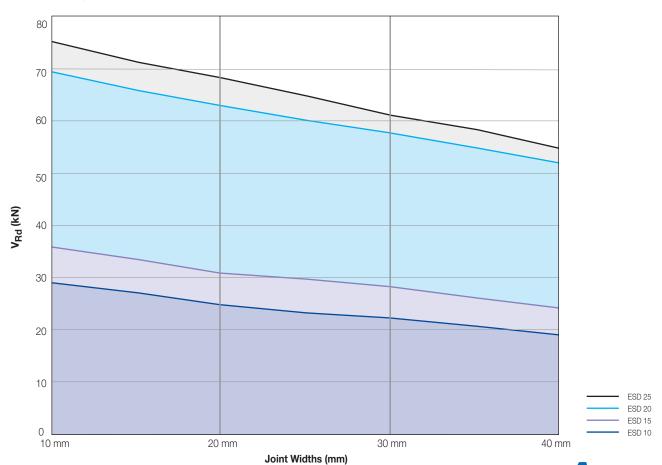
Push the dowel component through the joint filler (if applicable) until it is fully located in the sleeve component. It may be necessary to tap the dowel component to overcome the dimple which pinch holds the dowel in the sleeve and prevents dislocation when the concrete is vibrated.

Fix the local reinforcement in position around the dowel component together with any other reinforcement that is required, ensuring that the correct cover to the reinforcement is maintained. Pour the concrete to complete the installation of the shear connector.



Notes

- (i) Although installation is shown for Ancon DSD, the procedure is the same for all Ancon shear connectors.
- (ii) Where deep concrete pours are proposed, the installation will require further consideration. More robust fixing of the sleeve and dowel components will be necessary to avoid displacement during placing of the concrete.


DESIGN RESISTANCE

Ancon DSD V_{Rd} Design Resistance (kN) for Various Joint Widths (mm) at the Maximum Slab Thickness (mm) in C30/37 Concrete

Note: For more detailed information please see page 11.

Ancon ESD V_{Rd} Design Resistance (kN) for Various Joint Widths (mm) at the Maximum Slab Thickness (mm) in C30/37 Concrete

Note: For more detailed information please see page 17.

DSD AND DSDQ SHEAR CONNECTORS

V_{Rd} Design Resistance (kN) for Various Joint Widths (mm) and Slab Thickness (mm) using C25/30 Concrete

Slab Thickness	Product				th of Joint (mm)		
(mm)	Reference	10	20	30	40	50	60
180*		39.5	39.5	29.9	23.2	-	-
200		45.7	41.8	29.9	23.2	-	-
220	DSD 25	52.3	41.8	29.9	23.2	-	-
240		59.3	41.8	29.9	23.2	-	-
260		66.7	41.8	29.9	23.2	-	-
280		69.6	41.8	29.9	23.2	-	-
180*		42.7	42.7	42.7	34.7	-	-
200		49.2	49.2	44.6	34.7	-	-
220	DSD/DSDQ 30	56.1	56.1	44.6	34.7	-	-
240		63.4	62.4	44.6	34.7	-	-
260		71.1	62.4	44.6	34.7	-	-
280		79.1	62.4	44.6	34.7	-	-
180*		43.8	43.8	43.8	43.8	40.4	-
200		50.3	50.3	50.3	49.4	40.4	-
220	DSD/DSDQ 50	57.3	57.3	57.3	49.4	40.4	-
240		64.6	64.6	63.5	49.4	40.4	-
260		72.3	72.3	63.5	49.4	40.4	-
280		80.4	80.4	63.5	49.4	40.4	-
200*		62.2	62.2	62.2	62.2	55.4	-
220		64.3	64.3	64.3	64.3	55.4	-
240	DSD/DSDQ 65	68.6	68.6	68.6	67.7	55.4	-
260	D9D/D9DQ 03	76.4	76.4	76.4	67.7	55.4	-
280		84.6	84.6	84.6	67.7	55.4	-
300		93.0	93.0	87.1	67.7	55.4	-
240*		86.1	86.1	86.1	86.1	73.8	-
260		89.1	89.1	89.1	89.1	73.8	-
280		94.8	94.8	94.8	90.1	73.8	-
300	DSD/DSDQ 75	104.0	104.0	104.0	90.1	73.8	-
320		113.6	113.6	113.6	90.1	73.8	-
340		123.4	123.4	115.9	90.1	73.8	-
320*		161.5	157.6	154.0	150.5	133.6	114.0
340		166.5	162.6	158.8	155.2	133.6	114.0
360		170.8	166.7	162.8	159.1	133.6	114.0
380	DSD/DSDQ 100	183.2	178.9	174.7	161.4	133.6	114.0
400		196.0	191.4	186.9	161.4	133.6	114.0
420		209.1	204.2	199.4	161.4	133.6	114.0
360*		185.0	181.3	177.7	174.3	171.0	167.9
380		193.4	189.5	185.8	182.2	178.8	175.5
400		206.6	202.5	198.5	194.7	191.0	176.1
420	DSD/DSDQ 130	220.2	215.8	211.5	207.5	203.6	176.1
140		234.0	229.3	224.8	220.5	206.5	176.1
460		248.2	243.2	238.4	233.8	206.5	176.1
450*		280.8	276.0	271.3	266.8	262.4	253.6
500		308.2	302.8	297.7	292.8	288.0	253.6
550		339.7	333.8	328.2	322.7	297.4	253.6
300 300	DSD/DSDQ 150	380.5	373.9	367.6	359.3	297.4	253.6
700		465.4	457.3	449.6	359.3	297.4	253.6
300		485.6	477.2	451.2	359.3	297.4	253.6
500*		441.1	434.6	428.3	422.2	369.3	315.0
350		485.1	478.0	471.0	441.8	369.3	315.0
700		529.9	522.1	514.5	441.8	369.3	315.0
300	DSD/DSDQ 400	620.9	611.8	554.1	441.8	369.3	315.0
900		712.7	666.4	554.1	441.8	369.3	315.0
1000		745.3	666.4	554.1	441.8	369.3	315.0
600*		485.1	485.1	485.1	485.1	485.1	485.1
350 700		515.5 561.4	515.5 561.4	515.5 561.4	515.5 561.4	515.5	515.5 561.4
700	DSD/DSDQ 450	561.4	561.4	561.4	561.4	561.4	561.4
300		654.4	654.4	654.4	654.4	654.4	586.9
900		747.9	747.9	747.9	747.9	684.7	586.9
1000		840.1	840.1	840.1	811.4	684.7	586.9

 $^{^{\}ast}$ Refers to the minimum slab depth $H_{\mbox{\footnotesize min}}$ for each connector type.

V_{Rd} Design Resistance (kN) for Various Joint Widths (mm) and Slab Thickness (mm) using C30/37 Concrete

(mm) 180*	Reference	10	20	30	40	EO	
180*					40	50	60
		44.7	41.8	29.9	23.2	-	-
200		51.8	41.8	29.9	23.2	-	-
220		59.3	41.8	29.9	23.2	-	-
240	DSD 25	67.3	41.8	29.9	23.2		-
260		69.6	41.8	29.9	23.2	-	_
280		69.6	41.8	29.9	23.2	_	_
180*		48.3	48.3	44.6	34.7		
200		55.7	55.7	44.6	34.7		
220		63.6	62.4	44.6	34.7	-	-
	DSD/DSDQ 30					-	-
240		71.8	62.4	44.6	34.7	-	-
260		80.5	62.4	44.6	34.7	-	-
280		89.7	62.4	44.6	34.7	- 10.1	-
180*		49.6	49.6	49.6	49.4	40.4	-
200		57.0	57.0	57.0	49.4	40.4	-
220	DSD/DSDQ 50	64.9	64.9	63.5	49.4	40.4	-
240		73.2	73.2	63.5	49.4	40.4	-
260		82.0	82.0	63.5	49.4	40.4	-
280		91.1	88.9	63.5	49.4	40.4	-
200*		70.5	70.5	70.5	67.7	55.4	-
220		72.8	72.8	72.8	67.7	55.4	-
240	DOD /DODO 05	77.8	77.8	77.8	67.7	55.4	-
260	DSD/DSDQ 65	86.6	86.6	86.6	67.7	55.4	-
280		95.8	95.8	87.1	67.7	55.4	_
300		105.5	105.5	87.1	67.7	55.4	-
240*		97.6	97.6	97.6	90.1	73.8	-
260		101.0	101.0	101.0	90.1	73.8	-
280		107.4	107.4	107.4	90.1	73.8	_
300	DSD/DSDQ 75	117.9	117.9	115.9	90.1	73.8	_
320		128.7	128.7	115.9	90.1	73.8	_
340		139.9	139.9	115.9	90.1	73.8	
320*		183.0	178.7	174.5	161.4	133.6	114.0
340		188.7	184.3	180.0	161.4	133.6	114.0
360		193.5	188.9	184.5	161.4	133.6	114.0
	DSD/DSDQ 100						
380		207.7	202.7	198.0	161.4	133.6	114.0
400		222.2	216.9	203.9	161.4	133.6	114.0
420		237.0	231.4	203.9	161.4	133.6	114.0
360*		209.7	205.5	201.4	197.6	193.8	176.1
380		219.2	214.8	210.6	206.5	202.7	176.1
400	DSD/DSDQ 130	234.2	229.5	225.0	220.7	206.5	176.1
420		249.5	244.5	239.8	235.1	206.5	176.1
440		265.2	259.9	254.8	249.5	206.5	176.1
460		281.2	275.6	270.2	249.5	206.5	176.1
450*		318.2	312.8	307.5	302.3	297.4	253.6
500		349.2	343.2	337.4	331.8	297.4	253.6
550	DOD/DODO 150	385.0	378.3	371.9	359.3	297.4	253.6
600	DSD/DSDQ 150	431.2	423.8	416.6	359.3	297.4	253.6
700		527.4	518.3	451.2	359.3	297.4	253.6
800		582.7	553.0	451.2	359.3	297.4	253.6
600*		499.9	492.5	485.4	441.8	369.3	315.0
650		549.8	541.7	533.8	441.8	369.3	315.0
700		600.5	591.7	554.1	441.8	369.3	315.0
800	DSD/DSDQ 400	703.7	666.4	554.1	441.8	369.3	315.0
900		778.7	666.4	554.1	441.8	369.3	315.0
1000		778.7	666.4	554.1	441.8	369.3	315.0
600*		549.8	549.8	549.8	549.8	549.8	549.8
650		584.2	584.2	584.2	584.2	584.2	584.2
700	DSD/DSDQ 450	636.2	636.2	636.2	636.2	636.2	586.9
800	202,202Q 400	741.7	741.7	741.7	741.7	684.7	586.9
			0.47.0	847.6	811.4	684.7	586.9
900		847.6	847.6	047.0	011.4	004.7	300.3

 $^{^{\}star}$ Refers to the minimum slab depth $\mathbf{H}_{\mbox{min}}$ for each connector type.

DSD Design Example

Slab thickness Maximum width of joint Concrete strength = 400mm = 30mm = C30/37 Characteristic dead load

Characteristic imposed load

= 100kN/m = 120kN/m = (100 x 1.35) + (120 x 1.5) = 315kN/m Design load

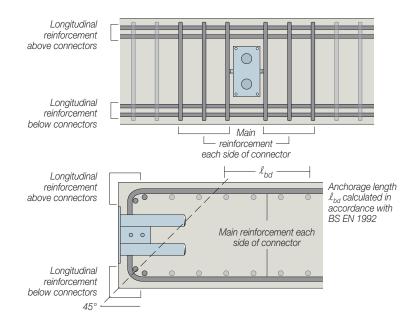
V_{Rd} (Design resistance) DSD100 = 203.9kN Maximum centres = 203.9 / 315 = 0.647m use 600mm DSD130 = 225.0kN= 225.0 / 315 = 0.714 m use 700mm

Either connector would be acceptable, although using DSD130s at 700mm centres would minimise the number of connectors to be installed.

 $\begin{array}{l} \gamma_G = 1.35^* \\ \gamma_Q = 1.5^* \end{array}$

 * The partial safety factors of 1.35 (* G) and 1.5 (* G) are those recommended in EN 1990 Eurocode: Basis for structural design. For designs to Eurocode 2, please refer to the national annex for the factors to be used in the country concerned.

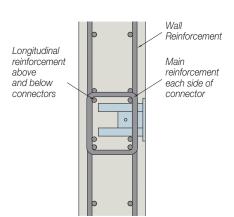
See local reinforcement requirements on page 12.



DSD Reinforcement Details

Local reinforcement is required around each connector to guarantee that the forces are transferred between the connectors and the concrete. Correct detailing in accordance with appropriate design codes and the recommendations provided here will ensure Ancon DSD and DSDQ connectors attain their full capacity.

The tables show proposals for the type and spacing of the main reinforcement, together with details of reinforcement above and below the connectors.

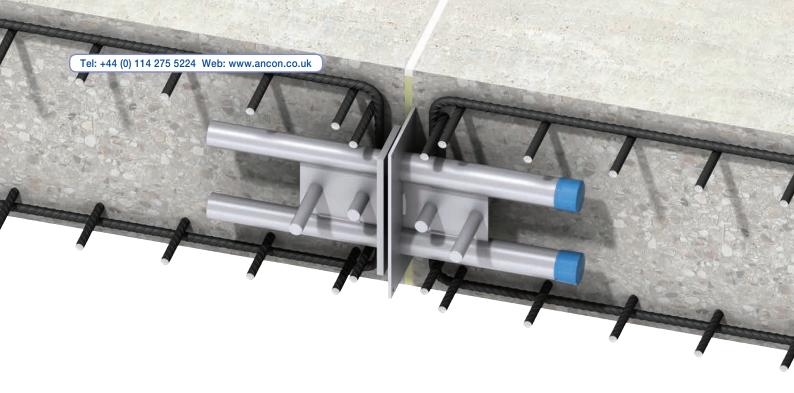


Based on C25/30 concrete, maximum slab depth (see table on page 10) and 20mm joint

DSD/DSDQ		Options for Main Reinforcement (No. of U-bars each side)								
Reference	H8	H10	H12	`H14	H16 ´	H20				
25*	3	2	-	-	-	-				
30	-	3	2	-	-	-				
50	-	3	3	-	-	-				
65	-	4	3	-	-	-				
75	-	5	4	3	-	-				
100	-	-	5	4	3	-				
130	-	-	-	5	4	3				
150	-	-	-	-	6	4				
400	-	-	-	-	7	5				
450	-	-	-	-	9	7				

DSD/DSDQ	Options for Longitudinal Reinforcement (No. of bars top and bottom)								
Reference	Н8	H10	H12	H14	H16	H20			
25*	2	2	-	-	-	-			
30	2	2	-	-	-	-			
50	-	2	2	-	-	-			
65	-	2	2	-	-	-			
75	-	3	2	-	-	-			
100	-	-	3	2	2	-			
130	-	-	3	3	2	-			
150	-	-	-	-	4	3			
400	-	-	-	-	5	3			
450	-	-	-	-	6	4			

For walls, the reinforcement is repeated as in the tables but with links replacing the U-bars. Links should extend between the near face and the far face of the wall reinforcement.



Based on C30/37 concrete, maximum slab depth (see table on page 11) and 20mm joint

DSD/DSDQ	Options for Main Reinforcement (No. of U-bars each side)								
Reference	H8	H10	H12	H14	H16	H20			
25*	3	2	-	-	-	-			
30	-	3	2	-	-	-			
50	-	4	3	-	-	-			
65	-	4	3	-	-	-			
75	-	5	4	3	-	-			
100	-	-	6	5	4	-			
130	-	-	-	5	4	3			
150	-	-	-	-	6	5			
400	-	-	-	-	6	5			
450	-	-	-	-	9	7			

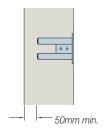
DSD/DSDQ	Options for Longitudinal Reinforcement (No. of bars top and bottom)									
Reference	Н8	H10	H12	H14	H16	H20				
25*	2	2	-	-	-	-				
30	2	2	-	-	-	-				
50	-	2	2	-	-	-				
65	-	2	2	-	-	-				
75	-	3	2	-	-	-				
100	-	-	3	3	2	-				
130	-	-	4	3	2	-				
150	-	-	-	-	4	3				
400	-	-	-	-	5	3				
450	-	-	-	-	7	5				

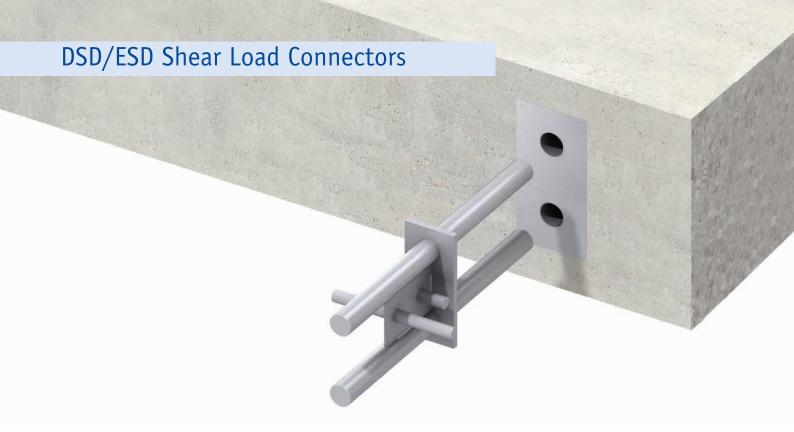
^{*} DSD only

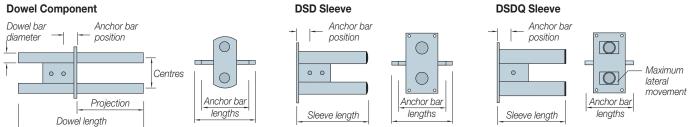
Cover

 $\label{eq:minimum cover C_U to local reinforcement is to the recommendations of BS EN 1992.$

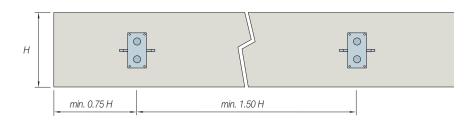
Maximum cover $C_{\mbox{\scriptsize f}}$ to face of slab is as shown below:


Ref DSD	Max Cover to Face C _f (mm)	Ref DSDQ	Max Cover to Face C _f (mm)
25	40	-	-
30	40	30	40
50	40	50	40
65	40	65	40
75	40	75	40
100	50	100	65
130	50	130	70
150	70	150	70
400	80	400	80
450	50	450	50

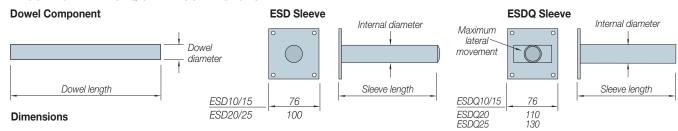




Where a sleeve component is cast into a wall the thickness of the wall should be at least 50mm more than the length of the sleeve.


Dimensions

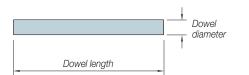
Ref	Dowel Component							DSD Sleeve		DSDQ Sleeve			
DSD DSDQ	Overall Length	Dowel Dia	Dowel Centres	Dowel Projection	Anchor Bar Position	Anchor Bar Lengths	Overall Length	Anchor Bar Position	Anchor Bar Lengths	Overall Length	Anchor Bar Position	Anchor Bar Length	Lateral Mov'nt
25*	250	14	40	120	31	80/140	120	28	80/140	-	-	-	-
30	260	16	48	120	31	50/110	120	28	50/110	140	33	70	+/-13
50	280	18	50	130	31	50/130	135	28	50/130	160	33	70	+/-12
65	300	20	65	150	31	50/130	155	28	50/130	175	33	70	+/-10
75	340	22	75	150	33	50/150	155	31	50/150	175	33	120	+/-10
100	400	30	100	210	34	80/170	210	36	80/170	240	54	170	+/-20
130	470	35	105	260	34	80/170	265	36	80/170	290	59	170	+/-18
150	550	42	120	270	54	80/210	275	39	80/210	305	54	170	+/-10
400	660	52	160	330	70	130/300	335	70	130/300	355	64	300	+/-13
450	690	65	180	360	80	130/300	370	80	130/300	400	89	300	+/-27

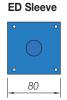

Notes: *DSD only. All dimensions are in millimetres (mm).

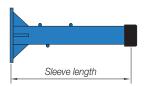
Edge Distance and Spacing

The minimum edge distance and spacing of all Ancon shear load connectors is determined by the depth of slab and is illustrated in the adjacent drawing. It is possible to reduce the spacing further with the absolute minimum being 1.5 $\rm H_{min}$ (where $\rm H_{min}$ is the minimum slab depth for each connector type), however the design resistances are then limited to those given for $\rm H_{min}$ only.

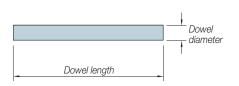
ANCON ESD AND ESDQ SHEAR CONNECTORS




Ref	Dowel Component		ESD Sleeve		ESDQ Sleeve		
ESD ESDQ	Dowel Diameter	Dowel Length	Internal Diameter	Sleeve Length	Internal Diameter	Sleeve Length	Max. Lateral Movement
10 300	20	300	21	170	21	170	+/-10
10 400	20	400	21	220	21	220	+/-10
15 300	22	300	23	170	23	170	+/-10
15 400	22	400	23	220	23	220	+/-10
20 300	30	300	31	170	31	170	+/-20
20 400	30	400	31	210	31	210	+/-20
25 350	35	350	36	195	36	195	+/-18
25 470	35	470	36	265	36	285	+/-18

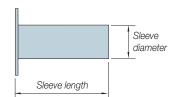

Notes: Example Ref ESD10 300. All dimensions are in millimetres (mm).

ANCON ED SHEAR CONNECTORS



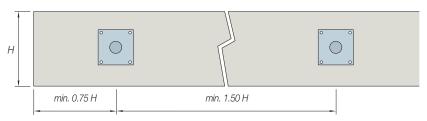
Dimensions

Ref ED	Dowel Length	Dowel Diameter	Sleeve Length
10 300	300	20	170
10 400	400	20	220
15 300	300	22	170
15 400	400	22	220
20 300	300	30	170
20 400	400	30	220
25 350	350	35	195
25 470	470	35	260


ANCON STAISIL ACOUSTIC CONNECTORS

Dowel Component

Staisil Sleeve



Dimensions

Ref	Dowel Length	Dowel Diameter	Sleeve Length	Sleeve Diameter
Staisil	400	35	127	64

Edge Distance and Spacing

The minimum edge distance and spacing of all Ancon shear load connectors is determined by the depth of slab and is illustrated in the adjacent drawing. It is possible to reduce the spacing further with the absolute minimum being 1.5 $\rm H_{min}$ (where $\rm H_{min}$ is the minimum slab depth for each connector type), however the design resistances are then limited to those given for $\rm H_{min}$ only.

 $V_{Rd}\,$ Design Resistance (kN) for Various Joint Widths (mm) and Slab Thickness (mm) using C25/30 Concrete

March Reference 10 20 30 40						
Section Sect	Slab Thickness		10			40
28		neierence				
BEDIESDO 10						
Balicaburi 26.7 25.7 22.4 19.7						
267 287 224 197		ESD/ESDQ 10				
287 287 287 224 19.7						
987 287 287 281 249 900 282 319 281 249 910 ESDESDQ 15 32,3 319 281 249 910 282,3 319 281 249 910 32,3 319 281 249 910 32,3 319 281 249 910 32,3 319 281 249 910 47,3 47,3 47,3 47,3 910 47,3 47,3 47,3 47,3 910 47,3 47,3 47,3 47,3 910 48,9 54,9 54,9 54,9 52,7 910 60,0 60,0 60,0 57,8 52,7 910 60,0 60,0 57,8 52,7 910 60,0 60,0 57,8 52,7 910 60,0 60,0 57,8 52,7 910 65,8 56,8 56,8 56,8 910 65,0 65,0 61,5 55,7 910 65,0 65,0 61,5 55,7 910 65,0 65,0 61,5 55,7 910 75,4 68,0 61,5 55,7 910 75,4 68,0 61,5 55,7 910 75,4 68,0 61,5 55,7 910 75,4 68,0 61,5 55,7 910 28,7 22,4 19,7 910 28,7 22,4 19,7 910 28,7 22,7 22,4 19,7 910 28,7 22,7 22,4 19,7 910 28,7 25,7 22,4 19,7 910 32,2 31,3 28,1 24,9 910 32,2 31,3 28,1 24,9 910 32,2 31,3 28,1 24,9 910 32,2 31,3 28,1 24,9 910 32,2 31,3 28,1 24,9 910 32,2 31,3 28,1 24,9 910 32,2 31	60			25.7		
200	30		26.7	25.7	22.4	
200	30*		28.7	28.7	28.1	24.9
SEDIESDQ 15 S2.3 31.9 28.1 24.9	00		32.3	31.9	28.1	
SOLITION						
192		ESD/ESDQ 15				
192						
173 173 173 173 173 173 173 173 173 174 175						
Section Sect						
Section Sect						
Solution						
600 600 600 57.8 52.7	60	ESD/ESDO 20		60.0		
	30	E0D/E0DQ 20	60.0	60.0	57.8	52.7
	00		60.0	60.0	57.8	52.7
Section Sect						
Section Sect						
Section Sect						
175.4 88.0 61.5 55.7						
		ESD/ESDQ 25				
Table Thickness Product Reference 10 20 30 40 40 40 40 40 40 4						
Tab Thickness Product Seference 10 20 20 30 40 30 40 30 40 30 3						
Name	00		75.4	68.0	61.5	55.7
Name						
25.6 25.6 22.4 19.7						
26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 26.7 25.7 22.4 19.7 20 32.3 31.9 28.1 24.9 20 32.3 31.9 28.1 24.9 20 32.3 31.9 28.1 24.9 20 32.3 31.9 28.1 24.9 20 32.3 31.9 28.1 24.9 20 32.3 31.9 28.1 24.9 20 32.3 31.9 28.1 24.9 20 47.3 47.3 47.3 47.3 47.3 47.3 20 47.3 47.3 47.3 47.3 47.3 20 60.0 60.0 57.8 52.7 20 7.0 60.0 60.0 57.8 52.7 20 7.0 60.0 60.0 57.8 52.7 20 7.0 60.0 60.0 57.8 52.7 20 7.0 60.0 60.0 57.8		Reference				
Page						
10	00			25.7		
10	20	ED 10	26.7	25.7	22.4	19.7
26.7 25.7 22.4 19.7	10	ED 10	26.7	25.7	22.4	19.7
197 197	60		26.7	25.7	22.4	19.7
28.7 28.7 28.1 24.9						
32.3 31.9 28.1 24.9						
20						
10 10 10 10 10 10 10 10						
32.3 31.9 28.1 24.9 30.0 32.3 31.9 28.1 24.9 30.0 32.3 31.9 28.1 24.9 30.0 32.3 31.9 28.1 24.9 30.0 47.3 47.9 47.3 47.3 47.9		ED 15				
32.3 31.9 28.1 24.9						
A7.3						
54.9 54.9 54.9 52.7						
80 ED 20 60.0 60.0 57.8 52.7 80 60.0 60.0 57.8 52.7 90 60.0 60.0 57.8 52.7 90 60.0 60.0 57.8 52.7 90 60.0 60.0 57.8 52.7 90 60.0 60.0 57.8 52.7 90 65.0 65.0 66.8 55.7 90 73.7 68.0 61.5 55.7 90 75.4 68.0 61.5 55.7 90 75.4 68.0 61.5 55.7 90 75.4 68.0 61.5 55.7 90 75.4 68.0 61.5 55.7 90 80 80 61.5 55.7 90 90 30 40 90° 22.3 22.3 22.3 22.3 90 30.3 27.4 24.9 22.7 <td< td=""><td>20*</td><td></td><td>47.3</td><td>47.3</td><td>47.3</td><td>47.3</td></td<>	20*		47.3	47.3	47.3	47.3
60.0 60.0 57.8 52.7	10		54.9	54.9	54.9	52.7
60.0 60.0 57.8 52.7		ED 00				
60.0 60.0 57.8 52.7		ED 20				
50 60.0 60.0 57.8 52.7 10* 56.8 56.8 56.8 55.7 50 65.0 65.0 61.5 55.7 50 73.7 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 75.4 68.0 61.5 55.7 50 22.3 22.3 22.3 22.3 22.3 20 30.3 27.4 24.9 22.7 22.7 22.7 22.7 22.7 22.7 22.7						
56.8 56.8 56.8 55.7 50						
65.0 65.0 61.5 55.7						
Fig. 25 73.7 68.0 61.5 55.7						
75.4 68.0 61.5 55.7 75.4 68.0 61.5 55.7 75.4 68.0 61.5 55.7 75.4 68.0 61.5 55.7 75.4 68.0 61.5 55.7 75.4 68.0 61.5 55.7 75.4 68.0 61.5 55.7 75.4 68.0 61.5 55.7 75.4 68.0 61.5 75.7 75.4 75.4 75.4 75.4 75.4 75.4 75						
10		ED 25				
Total Tota						
Ab Thickness Product Reference 10 20 30 40	50					
nm) Reference 10 20 30 40 50* 22.3 22.3 22.3 22.3 30 27.8 27.4 24.9 22.7 20 Staisil 30.3 27.4 24.9 22.7 20 30.3 27.4 24.9 22.7 40 30.3 27.4 24.9 22.7 40 30.3 27.4 24.9 22.7	00		75.4	68.0	61.5	55.7
nm) Reference 10 20 30 40 50* 22.3 22.3 22.3 22.3 30 27.8 27.4 24.9 22.7 20 Staisil 30.3 27.4 24.9 22.7 20 30.3 27.4 24.9 22.7 40 30.3 27.4 24.9 22.7 40 30.3 27.4 24.9 22.7						
60* 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.						
27.8 27.4 24.9 22.7 20.0 Staisil 30.3 27.4 24.9 22.7 20.0 20.0 30.3 27.4 24.9 22.7 20.0 20.0 20.0 20.0 20.0 20.0 20.0		Reference				
500 Staisil 30.3 27.4 24.9 22.7 20 30.3 27.4 24.9 22.7 40 30.3 27.4 24.9 22.7 20 22.7 20 22.7 24.9 22.7						
20 Statisti 30.3 27.4 24.9 22.7 40 30.3 27.4 24.9 22.7					24.9	
20 Statisti 30.3 27.4 24.9 22.7 40 30.3 27.4 24.9 22.7	00	Stoioil	30.3	27.4	24.9	22.7
40 30.3 27.4 24.9 22.7		Staisii			24.9	
			30.3	27.4	24.9	22.7

 $^{^{\}star}$ Refers to the minimum slab depth $\mathrm{H}_{\mbox{min}}$ for each connector type.

V_{Rd} Design Resistance (kN) for Various Joint Widths (mm) and Slab Thickness (mm) using C30/37 Concrete

Slab Thickness	Product		Maximum Wid	Ith of Joint (mm)	
mm)	Reference	10	20	30	40
80*		29.1	25.7	22.4	19.7
00		29.6	25.7	22.4	19.7
20	E00/E000 40	29.6	25.7	22.4	19.7
40	ESD/ESDQ 10	29.6	25.7	22.4	19.7
60		29.6	25.7	22.4	19.7
80		29.6	25.7	22.4	19.7
80*		32.6	31.9	28.1	24.9
00		36.3	31.9	28.1	24.9
20	ESD/ESDQ 15	36.3	31.9	28.1	24.9
40		36.3	31.9	28.1	24.9
60		36.3	31.9	28.1	24.9
30		36.3	31.9	28.1	24.9
20*		53.6	53.6	53.6	52.7
40		62.2	62.2	57.8	52.7
60	F0D /F0D 0 00	69.9	63.5	57.8	52.7
30	ESD/ESDQ 20	69.9	63.5	57.8	52.7
00		69.9	63.5	57.8	52.7
				57.8	52.7 52.7
50		69.9	63.5		
40*		64.4	64.4	61.5	55.7
60		73.7	68.0	61.5	55.7
30	ESD/ESDQ 25	75.4	68.0	61.5	55.7
00	202, 202 & 20	75.4	68.0	61.5	55.7
50		75.4	68.0	61.5	55.7
00		75.4	68.0	61.5	55.7
lab Thickness	Product		Maximum Wid	Ith of Joint (mm)	
nm)	Reference	10	20	30	40
80*		29.1	25.7	22.4	19.7
00		29.6	25.7	22.4	19.7
20		29.6	25.7	22.4	19.7
10	ED 10	29.6	25.7	22.4	19.7
30		29.6	25.7	22.4	19.7
30		29.6	25.7	22.4	19.7
30*		32.6	31.9	28.1	24.9
00		36.3	31.9	28.1	24.9
20	ED 15	36.3	31.9	28.1	24.9
40	ED 15	36.3	31.9	28.1	24.9
60		36.3	31.9	28.1	24.9
30		36.3	31.9	28.1	24.9
20*		53.6	53.6	53.6	52.7
40		62.2	62.2	57.8	52.7
60		69.9	63.5	57.8	52.7
	ED 20				
80	-	69.9	63.5	57.8	52.7
00		69.9	63.5	57.8	52.7
50		69.9	63.5	57.8	52.7
40*		64.4	64.4	61.5	55.7
60		73.7	68.0	61.5	55.7
30		75.4	68.0	61.5	55.7
00	ED 25	75.4	68.0	61.5	55.7
50		75.4	68.0	61.5	55.7
00		75.4 75.4	68.0	61.5	55.7
<i>.</i>		10.4	U.O.U	01.0	00.1
loh Thioksson	Draduct		Maximum Wil	tth of laint (mrs)	
lab Thickness	Product	10		Ith of Joint (mm) 30	40
nm)	Reference	10	20		40
60*		25.3	25.3	24.9	22.7
80		30.3	27.4	24.9	22.7
00	04-1-11	30.3	27.4	24.9	22.7
20	Staisil	30.3	27.4	24.9	22.7
40		30.3	27.4	24.9	22.7

 $^{^{\}star}$ Refers to the minimum slab depth $\mathrm{H}_{\mbox{min}}$ for each connector type.

ESD	Design	Exam	nole

Slab thickness
Maximum width of joint
Concrete strength
Characteristic dead load
Characteristic imposed load
Design load = 220mm

= 30mm = C30/37 = 20kN/m = 26kN/m = (20 x 1.35) + (26 x 1.5) = 66kN/m

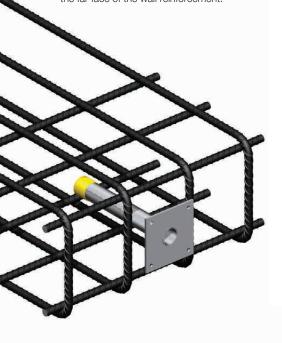
V_{Rd} (Design resistance) ESD10 = 22.4kN ESD15 = 28.1kN ESD20 = 53.6kN

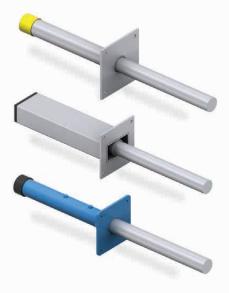
Maximum centres = 22.4 / 66 = 0.339m use 330mm = 28.1 / 66 = 0.426m use 400mm = 53.6 / 66 = 0.812m use 800mm

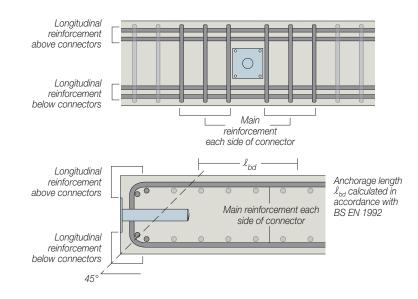
 $\begin{array}{l} \gamma_G = 1.35^* \\ \gamma_Q = 1.5^* \end{array}$

Any of the three connectors would be acceptable, although using ESD20s at 800mm centres would minimise the number of connectors to be installed.

*The partial safety factors of 1.35 (γ_G) and 1.5 (γ_G) are those recommended in EN 1990 Eurocode: Basis for structural design. For designs to Eurocode 2, please refer to the national annex for the factors to be used in the country concerned.




ESD Reinforcement Details


Local reinforcement is required around each connector to guarantee that the forces are transferred between the connectors and the concrete. Correct detailing in accordance with appropriate design codes and the recommendations provided here will ensure Ancon ESD, ESDQ, ED and Staisil connectors attain their full capacity.

The tables show proposals for the type and spacing of the main reinforcement, together with details of reinforcement above and below the connectors.

For walls, the reinforcement is repeated as in the tables but with links replacing the U-bars. Links should extend between the near face and the far face of the wall reinforcement.

Based on C25/30 concrete, maximum slab depth (see table on page 16) and 20mm joint

		,	,	•		
ED/ESD/ESDQ/Staisil		Options for Main Reinforcement (No. of U-bars each side)				
Reference	Н8	H10	H12	H14		
10	2	1	-	-		
15	2	2	-	-		
20	3	2	2	-		
25	-	3	3	2		
Staisil	2	2	_	_		


ED/ESD/ESDQ/Staisil	Options for Longitudinal Reinforcement (No. of bars top and bottom)					
Reference	H8	H10	H12	H14		
10	2	2	-	-		
15	2	2	-	-		
20	2	2	2	-		
25	3	2	2	-		
Staisil	2	2	-	-		

Based on C30/37 concrete, maximum slab depth (see table on page 17) and 20mm joint

ED/ESD/ESDQ/Staisil		Options for Main Reinforcement (No. of U-bars each side)			
Reference	H8	H10	H12	H14	
10	2	2	-	-	
15	2	2	-	-	
20	3	3	2	-	
25	-	3	3	2	
Staisil	2	2	-	-	

ED/ESD/ESDQ/Staisil	Options for Longitudinal Reinforcement (No. of bars top and bottom)					
Reference	H8	H10	H12	H14		
10	2	2	-	-		
15	2	2	-	-		
20	2	2	2	-		
25	3	2	2	-		
Staisil	2	2	-	-		

APPLICATIONS

Channel Tunnel Terminal, UK

Forum Shopping Centre, Algarve

Melbourne Cricket Ground, Australia

Scottish Widows, Edinburgh, UK

Olympic Stadium, Sydney, Australia

OTHER ANCON PRODUCTS

Reinforcement Continuity Systems

Ancon Eazistrip is approved by UK CARES and consists of bent bars housed in a galvanised steel casing. Once installed, the protective cover is removed and the bars are straightened, ready for joining to the slab reinforcement. Alternatively, Ancon KSN Anchors are cast into the wall and, when the formwork and thread protection are removed, Bartec threaded rebars are simply screwed into the anchors.

Reinforcing Bar Couplers

The use of reinforcing bar couplers can provide significant advantages over lapped joints. Design and construction of the concrete can be simplified and the amount of reinforcement required can be reduced. Because the strength of a mechanical splice is independent of the concrete in which it is located, the joint can also remain unaffected by any loss of cover. The range includes threaded and mechanically bolted couplers.

Used within a slab to provide additional reinforcement around columns, Ancon Shearfix is the ideal solution to the design and construction problems associated with punching shear. The system consists of double-headed studs welded to flat rails, positioned around the column. The shear load from the slab is transferred through the studs into the column.

Insulated Balcony Connections

Ancon's thermally insulated connectors minimise heat loss at balcony locations while maintaining structural integrity. They provide a thermal break and, as a critical structural component, transfer moment, shear, tension and compression forces. Standard solutions are available for concrete-to-concrete, steel-to-concrete and steel-to-steel interfaces.

Channels and Bolts for Fixing to Concrete

Cast-in channels are used for fixing masonry support systems to the edges of concrete floors and beams. Channels are available in different sizes ranging from simple self anchoring channels for restraints, to large capacity channels with integral anchors. A selection of channels can also be supplied plain-backed for surface fixing. Stainless steel expansion bolts and resin anchors complete the range.

Ancon Building Products

President Way, President Park Sheffield S4 7UR United Kingdom Tel: +44 (0) 114 275 5224 Fax: +44 (0) 114 276 8543

Fax: +44 (0) 114 276 8543 Email: info@ancon.co.uk Visit: www.ancon.co.uk

Ancon (Middle East) FZE

PO Box 17225
Jebel Ali
Dubai
United Arab Emirates
Tel: +971 (0) 4 883 4346
Fax: +971 (0) 4 883 4347
Email: info@ancon.ae
Visit: www.ancon.ae

Ancon Building Products

98 Kurrajong Avenue Mount Druitt Sydney NSW 2770 Australia

Tel: +61 (0) 2 8808 1111 Fax: +61 (0) 2 9675 3390 Email: info@ancon.com.au Visit: www.ancon.com.au

Ancon Building Products

2/19 Nuttall Drive Hillsborough Christchurch 8022 New Zealand

Tel: +64 (0) 3 376 5205 Fax: +64 (0) 3 376 5206 Email: info@ancon.co.nz Visit: www.ancon.co.nz

Ancon (Schweiz) AG

Gewerbezone Widalmi 10 3216 Ried bei Kerzers Switzerland

Tel: +41 (0) 31 750 3030 Fax: +41 (0) 31 750 3033 Email: info@ancon.ch Visit: www.ancon.ch

Ancon Building Products GesmbH

Puchgasse 1 A-1220 Vienna Austria

Tel: +43 (0) 1 259 58 62-0 Fax: +43 (0) 1 259 58 62-40 Email: info@ancon.at Visit: www.ancon.at

Ancon GmbH

Bartholomäusstrasse 26 90489 Nuremberg Germany Tel: +49 (0) 911 955 1234 0 Fax: +49 (0) 911 955 1234 9

Fax: +49 (0) 911 955 123 Email: info@anconbp.de Visit: www.anconbp.de

These products are available from:

The construction applications and details provided in this literature are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons.

Whilst every care has been exercised in the preparation of this document to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted in respect of Ancon Building Products.

With a policy of continuous product development Ancon Building Products reserves the right to modify product design and specification without due notice.

© Ancon Building Products 2014

