

for the Construction Industry

Thermally Insulated Balcony Connectors High integrity structural solutions to minimise cold bridging and its associated issues

Energy efficiency is becoming increasingly important in today's sustainable building designs and the thermal performance of the building envelope is a key design consideration.

At the same time, architects are looking to create stylish, aesthetically appealing, mixed-use developments that combine high density occupancy with accessible outdoor space. Balconies often provide the answer, but as they typically pass through the building envelope, the fixing detail requires special attention to minimise thermal bridging and its various consequences.

Thermal bridges occur where the insulation layer is penetrated by a material with a relatively high thermal conductivity. In the past, balconies have been constructed by such methods as simply extending the concrete floor as a continuous protruding slab or using steel brackets fixed directly to the structure. These methods result in local heat losses and higher energy use. Cold internal surface temperatures can also cause condensation and mould growth, resulting in potentially harmful living conditions for residents. In extreme cases, buildings are condemned as remedial action can be unsuccessful.

Ancon's thermally insulated connectors minimise heat loss at balcony locations while maintaining structural integrity.

They provide a thermal break by inserting a material with a low thermal conductivity between elements with a higher conductivity and most also provide local insulation at the joint.

As a critical structural component, they transfer moment, shear, tension and compression forces.

Standard solutions are available for concrete-to-concrete, steel-toconcrete and steel-to-steel applications.

Ancon Isotec thermally insulated balcony connector

CE Marking

Construction products which fall within the scope of a harmonised European Standard should carry CE marking under the EU Construction Products Regulation. For steel fabrications like the Ancon STC or Ancon STS balcony connector, the harmonised standard is BS EN 1090-1 Execution of steel structures and aluminium structures: Requirements for conformity assessment of structural components. Ancon complies with all CE marking requirements of this standard including designs to EN 1993 (Eurocode 3) and external certification of our factory production controls by an approved body.

Contents

The Ancon Range of Balcony Connectors	4-5
Isolan Concrete-to-Concrete	
Connectors	6-15
Isotec Concrete-to-Concrete	
Connectors	16-21
STC Steel-to-Concrete Connectors	22-27
STS Steel-to-Steel Connectors	28-30
Other Ancon Products	31

CE marked to BS EN 1090-1 (STS/STC)

Minimise heat loss & energy use

N55Plus

Product information in NBS format

Reduce risk of condensation & mould growth

ISO 9001, ISO 14001

Transfer moment, shear, tension & compression forces

For concrete & steel constructions

3

& OHSAS 18001

Ancon Isolan

For Concrete-to-Concrete Applications

Isolan is a simple, cost-effective thermal break system for most concrete-to-concrete applications. It provides continuity to both the wall insulation and the slab reinforcement. Standard systems, comprising rigid CFC-free polystyrene insulation and stainless steel shear reinforcement, suit a minimum slab depth of 160mm.

The Isolan system uses conventional reinforcing bars to provide the tension and compression reinforcement. When compared to systems where this reinforcement is an integral and fixed component, Isolan can provide substantial cost savings and simplify specification, scheduling, transportation, handling and installation. Fire protection can be incorporated into the system by adding fire resistant strips to the unit.

The MV system is used for the transfer of moment and shear forces in cantilevered balconies and the V system is used for the transfer of shear forces in simply supported balconies.

The Isolan system has undergone independent testing at EMPA; the Swiss Federal Laboratories for Materials Science and Technology. See pages 6-15

Ancon Isotec

For Concrete-to-Concrete Applications

Isotec is a high performance thermal break system for concrete-to-concrete applications. It is particularly suitable for highly energy efficient structures, heavily congested or stepped floor slabs, applications where maximum corrosion protection is required and when an integral fire resistance is preferred to the installation of a separate fire protection barrier.

Each unit is manufactured as a nondeformable cage offering high rigidity and dimensional stability. The insulation component comprises Rockwool[®] mineral wool that offers inherent fire-resistant qualities. All reinforcement and metal components are manufactured from stainless steel which offers improvements in both thermal efficiency and corrosion resistance over carbon steel systems. An additional benefit is the use of short compression studs instead of compression bars which offer greater concrete design flexibility and simplify installation.

Isotec has been thoroughly and independently tested by the French CSTB and holds Avis Technique Number 20/11-232.

This system is available in a number of different shapes and sizes to cater for a wide range of applications. See pages 16-21

Isolan V System

4

Isolan MV System

Ancon STC

For Steel-to-Concrete Applications

The STC system is used for anchoring steel balconies to concrete floor slabs and has been proven through thermal modelling to reduce heat loss when compared to direct connections.

The two part assembly, comprising a cast-in anchorage and a post-fixed bracket with thermal pad located at the interface, allows for phased construction, reducing the risk of the units being damaged during the construction process.

Manufactured to order, the bracket depth can be designed to suit the exact requirements of the application and avoid conflicts with the external cladding.

Serrated pads and slots provide adjustability in the final bracket position without the need for stop butts or levelling shims.

Anchor bars are Grade B500B and are supplied fixed to Duplex stainless steel couplers and a stainless steel nail plate.

The fabricated brackets are manufactured from hot-dip galvanised S355 plain carbon steel as standard and can be supplied in stainless steel for applications requiring enhanced corrosion protection, such as coastal areas. They are designed to EN 1993 (Eurocode 3) and CE-marked to EN 1090 Part 1. CE

See pages 22-27

Ancon STS For Steel-to-Steel Applications

The STS system is a compact thermal break, typically used for connecting steel balconies to structural steel frames but is equally suitable for other steel-to-steel applications. It is available in three standard stud sizes to accommodate a wide range of loads. Manufactured to order, the vertical centres of the fixing studs can be specified to suit the exact requirements of the application. Thermal modelling of a typical STS application showed a reduction in heat loss of almost 50% compared to a direct steel connection.

The STS connector comprises tension and compression components within a single combined and compact unit, wrapped in polystyrene insulation. It features four A4 stainless steel fixing studs and a thermoset plate is located at each steel interface. The fabricated compression component is supplied in hot dipped galvanised steel as standard and can be supplied in stainless steel on request.

STS connectors are designed to EN 1993 (Eurocode 3) and CE marked to BS EN 1090 Part 1.

See pages 28-30

Construction Applications

Most of the illustrations in this literature show masonry cavity walls with brick cladding as this build method is common in the UK, however the Ancon range is suitable for many forms of construction including direct insulated render and rainscreen cladding. Contact Ancon with details of your specific application.

ncon

Ρ	ro	d		t	Se	lec	tic	n	Gr	id
	10	u	uu	ι.	SC	ICC	ui			ľu

		Structur	al Frame
		Concrete	Steel
Sony	Concrete	Isolan or Isotec	Contact Ancon
Balc	Steel	STC	STS

CE

Ancon Isolan System Benefits

- ✓ Cost-effective concrete-to-concrete connector
- Uses conventional rebars to provide tension and compression
- ✓ Accommodates all structural loads
- ✓ Modular design allows for special configurations
- ✓ Available in depths to suit most common slab thicknesses
- Fire protection available

Standard Isolan systems, comprising rigid CFC-free polystyrene insulation and stainless steel shear reinforcement, suit most depths of cantilever and simply supported balconies. The various systems allow the transfer of all loads in structural concrete i.e. moment, shear, compression and tension, and are suitable for straight runs and both internal and external corners.

Ancon Isolan connectors use conventional reinforcing bars to provide the tension and compression reinforcement. When compared to systems where this reinforcement is an integral component, the Ancon Isolan solution can provide substantial cost savings and simplify specification, scheduling, transportation, handling and installation.

ψ -Value

The Isolan system has a typical ψ -value of 0.5W/mK depending on the overall construction.

Curved or Stepped Balconies

Special configurations can be manufactured to suit specific project requirements including curved or stepped balconies.

Isolan Systems

Standard Isolan systems are available in five heights to suit different depths of balcony i.e. 160, 180, 200, 220 and 240mm, and are supplied complete with stainless steel shear reinforcement. Tension and compression reinforcement can form part of the slab reinforcement package or can be supplied by Ancon on request.

Isolan MV System

MV System

V System

balconies.

cantilevered balconies.

The Ancon Isolan MV system is used for the

The Ancon Isolan V system is used for the

transfer of shear forces in simply supported

transfer of moment and shear forces in

Isolan V System

System Components ISO-Element

The ISO-Element is 60mm thick, CFC-free, rigid white polystyrene insulation in a standard length of 750mm. It is available in five heights (160, 180, 200, 220 and 240mm) to suit different depths of balcony.

Shear Reinforcement

The shear reinforcement is duplex stainless steel grade 1.4362 and is available in three diameters (6, 8 and 10mm) as standard. In addition to the standard systems, this reinforcement can be bent into other required shapes outside the polystyrene insulation element.

Tubes

Polypropylene tubes with a 27mm internal diameter are located at pre-determined positions in the ISO-Element to allow for the passage of tension and compression reinforcing bars.

Rail

A high density polyethylene rail is located on the top edge of the ISO-Element to protect the insulation.

Tension/Compression Reinforcement (Not Supplied as Standard)

Reinforcement used for tension and compression bars to be grade B500B to BS4449: 2005. These can be sourced independently or supplied by Ancon.

Corrosion Resistance

The Ancon Isolan system has been engineered to provide a high resistance to corrosion. The shear reinforcement is stainless steel and the carbon steel tension and compression reinforcement passing through the insulation unit is encased in polypropylene tubes which fill with concrete fines at the time of casting. This prevents water and oxygen from reaching the bars, thus providing corrosion protection.

Height d (mm)	Height y (mm)	Length b Shear Bar 6mm Dia.	Length b Shear Bar 8mm Dia.	Length b Shear Bar 10mm Dia.	Angle α
160	90	530	670	810	39°
180	110	530	670	810	44°
200	130	530	670	810	47°
220	150	530	670	810	53°
240	170	530	670	810	57°

Note: Shear bar length (b) tolerance +/-10mm

Fire Protection (Optional Extra)

The Isolan system has been assessed in accordance with DIN 4102: Fire behaviour of building materials and components. Fire protection can be provided by adding Duripanel fire resistant strips to the base or to the top and base of the ISO-Element. The strips are available in 18, 28 or 36mm thickness providing 30, 60 or 90 minute fire resistance respectively. Examples of how these strips are referenced are 1R30 for a 30 minute strip fixed to the base and 2R90 for a 90 minute strip fixed to the top and base. When specifying and ordering, these references should be added as a suffix to the Isolan system (see page 9), for example 4MV6-200-5Ø12T/ 5Ø16C-1R60. The polyethylene rail is omitted from the ISO Element if these strips are employed to the top. For further information contact Ancon's Technical Services Team.

As an alternative to Duripanel, Ancon recommends PROMASEAL[®] Expansion Joint Strips from Promat UK. These strips are highly compressible and flexible seals which offer 120 minute fire resistance. Full technical and installation details are available from the manufacturer. Strip size 4009042 suits the 60mm insulation thickness of an Isolan system and should be sourced directly from Promat UK.

d

Isolan MV Range

2MV6

2 Shear Bars 6mm Diameter - Supplied

5 Tension and 5 Compression Bars Required

4MV6

4 Shear Bars 6mm Diameter - Supplied

5 Tension and 5 Compression Bars Required

4**MV**8

4 Shear Bars 8mm Diameter - Supplied

5 Tension and 5 Compression Bars Required

4MV10

4 Shear Bars 10mm Diameter - Supplied 5 Tension and 5 Compression Bars Required

Isolan V Range

2V6

2 Shear Bars 6mm Diameter - Supplied

4 Compression Bars Required

4 Shear Bars 6mm Diameter - Supplied 5 Compression Bars Required

4 Shear Bars 8mm Diameter - Supplied 5 Compression Bars Required

4V10

4 Shear Bars 10mm Diameter - Supplied 5 Compression Bars Required

530mm

670mm

810mm

Specification Guidance Design Information

The graphs on pages 11 to 13 are used to select the most appropriate Isolan element, and the diameters of the shear, tension and compression reinforcement.

Example calculations are provided on the following page. Consideration should be given to horizontal forces on parapets and local concentrated load checks, these are not included in the examples.

The graphs provide the design resistance (ultimate limit state) values for the shear $V_{\mbox{\scriptsize Rd}}$ and moment $M_{\mbox{\scriptsize Rd}}.$

The Isolan element design is based on normal structural calculations. The calculations are based on the following material properties.

Concrete: C25/30 (cylinder/cube compressive strengths) = 30N/mm²

> Tension and compression reinforcement, BS4449, Grade B500B $R_e \ge 500N/mm^2$ $R_m \ge 540N/mm^2$

The partial load factors used in the examples are: Dead load (persistent) = 1.35 Imposed load (quasi) = 1.50

How to Use The Graphs

- **MV Elements**
- The graph for the height of the Isolan element that corresponds to balcony slab thickness is selected.
- The design shear load required (unit: kN per linear metre) is plotted on the horizontal axis of the graph and a vertical line drawn. From this, the relevant Isolan element type (i.e. 2MV6, 4MV6, 4MV8 or 4MV10) is selected.
- 3. The required design bending moment (unit: kNm per linear metre) is plotted on the vertical axis of the graph and a horizontal line drawn.
- 4. The intersection between the vertical line corresponding to the design shear load and the horizontal line corresponding to the design moment determines the respective diameters of the tension and compression reinforcement e.g. Ø12T/Ø16C. The first number refers to tension and the second to compression reinforcement. Refer to the drawings on page 8 for the number of bars required.

V Elements

- The balcony slab thickness is selected on the horizontal axis of the graph and a vertical line drawn.
- 2. The design shear load required (unit: kN per linear metre) is plotted on the vertical axis of the graph and a horizontal line drawn.
- The intersection between the vertical line corresponding to the balcony slab thickness and the horizontal line corresponding to the design shear load determines the Isolan element type and diameter/number of compression bars.

Calculation Method

A hard copy of the calculation to derive the design resistance graphs is available from Ancon on request.

Balcony Deflection

The deflection of the equivalent 'monolithic' balcony should be calculated in the usual way, in compliance with relevant standards and design codes. A coefficient of 1.20 must be applied to the calculated figure to determine the maximum deflection with Isolan connectors. The final figure can be used to determine the amount of pre-camber to apply to the formwork to compensate for the deflection.

Ancon Isolan Product Referencing 4MV8 - 200 - 5Ø12T / 5Ø16C

Number of System shear bars, height System type, Diameter of shear bars Number and diameter of tension bars required humber and diameter of compression bars required

Typical Specification Clause

Once the appropriate Isolan system has been selected from the design graphs, the following clause may be adapted for use. Details in *italics* must be changed to suit the product reference.

4MV8 - 200 - 5Ø12T / 5Ø16C

Ancon Isolan *MV* system *200mm* high comprising CFC-free polystyrene insulation, 60mm thick by 750mm long, and *four* stainless steel grade 1.4362 shear reinforcing bars of *8mm* diameter. System requires *five 12mm* diameter grade B500B tension bars and *five 16mm* diameter grade B500B compression bars to be supplied by others or by Ancon.

Applications

Ancon Isolan is suitable for straight runs and both internal and external corners. The following drawings show example applications in plan view.

Simply Supported Balcony

Supported Slab Recessed Balcony

Cantilever Balcony at Internal Corner

Cantilever Balcony with 90° External Corner

Obtuse Angle Corner Cantilever Balcony

Design Examples

1. MV Element Depth 180mm	1
Dead load slab G _{ks}	$= 4.5 \text{kN/m}^2$
Imposed load Q _k	$= 3.0 \text{kN/m}^2$
Parapet load G _{kp}	= 5.0kN/m
E _d = (1.35 x 4.5 + 1.50 x 3.0)	= 10.6kN/m ²
$G_d = (1.35 \times G_{kp}) = (1.35 \times 5.0)$	= 6.8kN/m
$M_{Ed} = (E_d \times I_1^2)/2 + (G_d \times I_2)$	= 34.1kNm/
$V_{Ed} = (E_d \times I_1) + G_d$	= 28.0kN/m

ו/m m

From graph for MV180 select 4Ø6 shear bars, Ø12/16 (tension/compression bars). Product reference 4MV6-180-5Ø12T/5Ø16C.

2. MV Element Depth 220mm

$V_{Ed} = (E_d \times I_1) + G_d$	= 68.7kN/m
$M_{Ed} = (E_d \times I_1^2)/2 + (G_d \times I_2)$	= 57.1kNm/m
$G_d = (1.35 \times G_{kp}) = (1.35 \times 35)$	= 47.3kN/m
$E_{d} = (1.35 \times 5.5 + 1.50 \times 3.0)$	= 11.9kN/m ²
Imposed load Q _k	= 3.0kN/m ²
Dead load (point) G_{kp}	= 35kN
Dead load slab G_{ks}	= 5.5kN/m ²

From graph for MV220 select 4Ø8 shear bars, Ø16/20 (tension/compression bars). Product reference 4MV8-220-5Ø16T/5Ø20C.

3. V Element Depth 200mm

$V_{Ed} = (E_d \times I_1)/2$	= 51.0kN/m
$E_{d} = (1.35 \times 7.0 + 1.50 \times 5.0)$	= 17.0kN/m ²
Imposed load Q _k	$= 5.0 \text{kN/m}^2$
Dead load finishes G_{kf}	= 2.0kN/m ²
Dead load slab G _{ks}	$= 5.0 kN/m^{2}$

From V graph select 200mm 4V8/5Ø12C, (4Ø8 shear bars with 5Nr. Ø12 compression bars). Product reference 4V8-200-5Ø12C.

 $Q_k + G_k$

200mm

V System

Tel: +44 (0) 114 275 5224 www.ancon.co.uk 10

Design Resistances

Isolan MV Element - 180mm Height

Shear V_{Rd} (kN/m)

Isolan MV Element - 200mm Height

Isolan MV Element - 240mm Height

Concrete Thickness (mm)

Design Considerations Corner Details

Where the diameter of either the tensile or compression reinforcement is above 12mm, special consideration should be given at corners to avoid a reinforcement clash.

20mm thick polystyrene make-up strips are typically detailed on the Isolan units to be installed locally at the corner. The corner units should be specified shorter in height than those used elsewhere in the slab. The filler pieces are supplied glued to the top and bottom respectively of the adjacent corner units. This is a simple and cost-effective way of ensuring the bars fall in a different horizontal plane.

When using 10mm or 12mm diameter bars, the 27mm diameter polypropylene tube can be used to offset bar height. Bars are simply positioned either to the top or to the bottom of the tubes and this position is then alternated by the bars in the adjacent unit to avoid a clash.

Reinforcement Anchorage Lengths

The information noted in the table provides the minimum anchorage lengths for Grade B500B tension and compression reinforcement to BS EN 1992, Eurocode 2.

The Grade B500B anchorage reinforcement should be detailed with the general balcony reinforcement. It can be sourced independently or supplied by Ancon on request.

Movement Joints

The maximum allowable uninterrupted length of balcony to be supported by Isolan units, before a movement joint is required, is given in the table in metres. At corners, the distance is half the lengths given.

Bar Diameter

(mm) :	≤10	12	14	16	20
Joint Centres, L (m) 1	3.00	11.30	10.10	9.20	8.00

Isolan Corner Arrangement

Reinforcement Anchorage Lengths

Rebar Size (mm)	Tension Bar Dimension 'A' (mm)	Tension Bar Dimension 'B' (mm)	Compression Bars Dimension 'C' (mm)	Compression Bars Dimension 'D' (mm)
10	1040	490	920	430
12	1320	630	1080	510
16	1880	910	1400	670
20	2440	1190	1720	830

Note: Tension bar lengths shown are based on lap lengths whilst compression bar lengths shown are based on anchorage lengths

Installation

Ancon Isolan components are fast and simple to install. These steps are provided as guidance and should be followed in conjunction with the site engineer's instructions and structural engineer's reinforcement details.

Any polystyrene which is damaged must be replaced or alternatively, where possible, patched with polyurethane foam to maintain the insulation properties.

Step 1

The Isolan system should always be orientated so the stainless steel shear reinforcing bars are at the bottom of the slab on the side of the load (the balcony side). The unit is then positioned and secured to the formwork.

Note: For clarity, not all reinforcement is shown.

Step 2

Insert the compression bars and tension bars (not supplied as standard with the system) through the polypropylene tubes, and secure them to the main floor slab and balcony reinforcement. The minimum anchor length must be achieved either side of the Isolan system, see page 14 for detailed dimensions.

Care should be taken to ensure that any misalignment of the compression bars does not exceed 25mm in 1000mm (1 in 40) as illustrated in the Part Plan View diagram.

Step 3

The concrete should preferably be poured adjacent to the Isolan system and simultaneously to either side to avoid any displacement of the polystyrene units. If the concrete is poured on one side only, the second side being at a later date, then the Isolan units must be securely fixed to avoid displacement.

Installation is shown for the MV system but is the same for the V system where the tension bars are excluded.

Misalignment of Compression Bars

Ancon Isotec

Isotec is a high performance thermal break system for concrete-to-concrete applications. It is particularly suitable for highly energy-efficient structures, heavily congested or stepped floor slabs where compression bars would be difficult to accommodate, applications where maximum corrosion protection is required and when an integral fire resistance is preferred to the installation of a separate fire protection barrier.

Each unit is manufactured as a non-deformable cage offering high rigidity and dimensional stability.

System Benefits

- Inherently fire-resistant mineral wool insulation
- Compression studs reduce rebar congestion and simplify installation
- Continuous stainless steel reinforcement maximises strength, thermal efficiency and corrosion protection
- ✓ Supplied as a complete unit providing rigidity and dimensional stability
- Extensive product line to suit a wide range of applications
- Independently assessed by CSTB

Reinforcement

Tensile and shear reinforcement consist of 1.4301 stainless steel with the characteristics of BSt500S. Tensile bars are continuous with no structural welding or point of weakness. Compression studs are manufactured from 12mm diameter, high resistance 1.4301 stainless steel bars with hot-forged heads.

In addition to thermal and durability benefits, stainless steel reinforcement reduces concrete cover requirements and can therefore provide additional design efficiencies over carbon steel systems.

Insulation

Fire-resistant Rockwool[®] mineral wool insulation is protected by a plastic U-shaped profile top and bottom. A label is affixed to the top identifying the system type and direction of placement.

Thickness:	80mm
Unit Length:	1000mm/330mm
Density:	100 kg/m³ minimum
ψ:	0.3 to 0.18 W/mK (depending on construction)
Fire resistance:	120 minutes as assessed by CSTB

Applications

Slab to slab transfer of bending moment and shear forces

Slab to slab, or slab to wall transfer of shear forces only

Slab to slab, or slab to wall transfer of shear forces positive and negative

Other standard configurations

Slab to slab with 100mm or 150mm level difference in slab

Slab to slab with 100mm or 150mm level difference in slab

Slab to slab at same level transfer of bending moment and shear forces positive and negative

ISO 80 V types E-M

Slab to slab at same level transfer of shear forces only

Slab to slab at same level transfer of shear forces positive and negative

Slab to wall upwards transfer of bending moment and shear forces

Slab to wall downwards transfer of bending moment and shear forces

Design Resistances

Isotec type ISO 80 MV

Isotec Type		A	E	3	С	.	D		E		F		G	N		Н			*
Tanaian Dara		MV 400	MV cO0	MV+		+	MV MV+	MV 6010	MV+	MV	MV+	10010	10010	MV++	10010	10010	MV++	MV+	14010
Compression Para		400	4010	4010	6010 600	0	6010 6010	0012	0012	10/01/2	10/012	10/012	10/012	10/012	12012	12/012	12/012	14/012	14/012
Shoar Bars		4012	12 4012 4012 10012 10012 10012 10012 10012 10012 10012 10012 10012							10/014	609	909	12/014	609	9/14	6/12/014	9/14		
		400	400	430	400 00		530 530	680	680	680	680	680	680	680	680	680	680	680	680
Unit Length mm		400	400	400	400 40		1000	000	000	000	000	000	000	000	10	000	000	000	000
Design Destin Mm 1000						Ls	30mm	80mm 3	Omm Sh	Ls near bar ompression ud Ø14 v elded pla	on vith tes	∕Tension bar							
Resistance	h (mm)	7.66	11 /1	11 /0	15 16 15	24	20 /5 19 75	26.58	26.20	20.84	30 00	10.72	20.61	27.00	19.76	10.05	16.10		
	170	9.27	12.54	12.55	16 70 16	70	20.40 10.70	20.00	20.20	32.04	34.02	40.73	44.52	41 74	40.70	49.00 54.00	40.49 50.21	-	-
	180	9.36	13.94	14.04	18.53 18.	32	22.44 21.20	32 59	32.04	40.59	37.89	50.07	44.52	41.74	59 94	60.29	58.24	-	
	190	10.35	15.35	15.52	20.35 20.	53	26.84 26.32	35.25	35.47	43.99	41.87	54.39	54 60	51.57	65.19	65.40	64.32	-	
Mpd (kNm/m)	200	11.34	16.76	17.01	22.18 22.4	13	29.30 28.86	38.48	38.84	47.96	45.78	59.29	59.63	56.46	71.01	71.35	70.30	-	-
nu v	210	12.33	18.16	18.49	24.00 24.3	33	31.77 31.38	41.71	42.20	51.93	49.69	64.18	64.66	61.35	76.82	77.30	76.29	87.22	83.82
	220	13.32	19.57	19.98	25.82 26.3	23	34.23 33.92	44.93	45.57	55.90	53.60	69.07	69.69	66.25	82.64	83.26	82.27	93.87	90.32
	230	14.31	20.98	21.46	27.65 28.	13	36.69 36.46	48.16	48.94	59.87	57.51	73.96	74.73	71.14	88.45	89.21	88.25	100.80	97.19
	240	15.30	22.38	22.95	29.47 30.0)4 🗄	39.16 38.99	51.39	52.31	63.84	61.42	78.86	79.76	76.03	94.26	95.17	94.24	107.49	103.75
	250	16.29	23.79	24.43	31.29 31.9	94	41.62 41.52	54.62	55.67	67.81	65.33	83.75	84.79	80.93	100.08	101.12	100.22	114.19	110.3
	160	31.60	31.60	47.41	31.60 47.4	41	50.14 75.21	50.14	75.21	50.14	75.21	50.14	75.21	100.28	50.14	75.21	100.28	-	-
	170-180	34.77	34.77	52.15	34.77 52.	15	56.19 84.28	56.19	84.28	56.19	84.28	56.19	84.28	112.38	56.19	84.28	112.38	-	-
V _{Rd} (kN/m)	190-200	34.77	34.77	52.15	34.77 52.	15	61.81 92.72	61.81	92.72	61.81	92.72	61.81	92.72	123.62	61.81	92.72	123.62	-	-
	210-220	34.77	34.77	52.15	34.77 52.	15	61.81 92.72	61.81	92.72	61.81	92.72	61.81	92.72	123.62	61.81	92.72	123.62	84.28	112.37
	230-250	34.77	34.77	52.15	34.77 52.	15	61.81 92.72	61.81	92.72	61.81	92.72	61.81	92.72	123.62	61.81	92.72	123.62	92.72	123.62

* ISO 80 MV I Systems (MV+, MV++) feature a continuous welded plate

Isotec type ISO 80 V

Isotec Type		Α	B	С	D	E	F	G	н	1	J	K	L	M
Compression Bars		2Ø12	2Ø12	2Ø12	2Ø12	4Ø12	4Ø12	4Ø12	4Ø12	2Ø12	2Ø12	2Ø12	2Ø12	2Ø12
Shear Bars		4Ø6	6Ø6	8Ø6	10Ø6	6Ø8	8Ø8	6Ø10	8Ø10	3Ø6	4Ø6	3Ø8	4Ø8	3Ø10
Ls (mm)		340	340	340	340	455	455	565	565	340	340	455	455	565
Unit Length (mm) 1000 1000					330									
Design Resistance	Slab Depth h (mm)		Ls &	30mm 160n	h h nm	Ls	Bor	nm	h		Ls	Bomm	h	
	160-170	31.60	47.41	63.21	79.01	-	-	-	-	23.70	31.60	-	-	-
	180	34.77	52.15	69.54	86.92	84.28	112.38	-	-	26.07	34.77	42.14	56.19	-
V _{Rd} (kN/m)	190	34.77	52.15	69.54	86.92	84.28	112.38	131.69	175.59	26.07	34.77	42.14	56.19	65.84
	200	34.77	52.15	69.54	86.92	92.72	123.62	131.69	175.59	26.07	34.77	46.36	61.81	65.84
	210-250	34.77	52.15	69.54	86.92	92.72	123.62	144.87	193.16	26.07	34.77	46.36	61.81	72.43

Notes: Tables use concrete grade C25/30 and 30mm concrete cover. See Design Considerations on page 20. Ancon Isotec ISO 80 V B 200

Isotec type ISO 80 DV

21														
Isotec Type		A	В	C	D	E	F	G	н	1	J	K	L	M
Compression Bars		2Ø12	2Ø12	2Ø12	2Ø12	4Ø12	4Ø12	4Ø12	4Ø12	2Ø12	2Ø12	2Ø12	2Ø12	2Ø12
Shear Bars		2 x 4Ø6	2 x 6Ø6	2 x 8Ø6	2 x 10Ø6	2 x 6Ø8	2 x 8Ø8	2 x 6Ø10	2 x 8Ø10	2 x 3Ø6	2 x 4Ø6	2 x 3Ø8	2 x 4Ø8	2 x 3Ø10
Ls (mm)		340	340	340	340	455	455	565	565	340	340	455	455	565
Unit Length (mm)			10	00			10	000				330		
Design Resistance	Slab Depth h (mm)		Ls 8	0mm 160m	h	Ls			h		Ls	Bomm		h
	160-170	±31.60	±47.41	±63.21	±79.01	-	-	-	-	±23.70	±31.60	-	-	-
	180	±34.77	±52.15	±69.54	±86.92	±84.28	±112.38	-	-	±26.07	±34.77	±42.14	±56.19	-
V _{Rd} (kN/m)	190	±34.77	±52.15	±69.54	±86.92	±84.28	±112.38	±131.69	±175.59	±26.07	±34.77	±42.14	±56.19	±65.84
	200	±34.77	±52.15	±69.54	±86.92	±92.72	±123.62	±131.69	±175.59	±26.07	±34.77	±46.36	±61.81	±65.84
	210-250	±34.77	±52.15	±69.54	±86.92	±92.72	±123.62	±144.87	±193.16	±26.07	±34.77	±46.36	±61.81	±72.43

Isotec type ISO 80 DMV

Isotec Type	Α	В	C	D					
Tension bars	6Ø12	8Ø12	10Ø12	12Ø12					
Compression Bars	6Ø12	8Ø12	10Ø12	12Ø12					
Shear Bars	2 x 6Ø6	2 x 6Ø6	2 x 6Ø6	2 x 6Ø8					
Ls (mm)	680	680	680	680					
Unit Length (mm)		1000							

Ancon	Isotec	Product	Refere	ncina

ISO	80	MV+ B	200
Standard	Standard	System	Slab
Isotec	Insulation	Туре	Depth
Code	Thickness	(see tables)	(h)

			Ls 30mm80)mm30mm Ls	
					†
				Sector Contraction	h
	Slab		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Design	Depth				<u> </u>
Resistance	h (mm)				
	160	±17.52	±24.85	±32.18	±36.11
	170	±19.76	±27.92	±36.08	±40.57
	180	±22.04	±31.04	±40.03	±45.11
	190	±24.31	±34.13	±43.96	±49.76
M _{Rd} (kNm/m)	200	±26.57	±37.23	±47.89	±54.35
	210	±28.83	±40.33	±51.82	±58.93
	220	±31.09	±43.42	±55.75	±63.50
	230	±33.36	±46.52	±59.68	±68.08
	240	±35.62	±49.62	±63.60	±72.66
	250	±37.89	±52.71	±67.54	±77.24
	160	±47.41	±47.41	±47.41	±75.21
V _{Rd} (kN/m)	170	±47.41	±47.41	±47.41	±84.28
	180	±52.15	±52.15	±52.15	±84.28
	190-250	±52.15	±52.15	±52.15	±92.72

Notes: Tables use concrete grade C25/30 and 30mm concrete cover. See Design Considerations on page 20. Ancon Isotec ISO 80 DMV B 200

Design Considerations Local Reinforcement

Local reinforcement is required to guarantee that the forces are transferred between the Isotec unit and the concrete. Correct detailing in accordance with appropriate design codes and the recommendations provided here will ensure the Ancon Isotec system attains its full capacity.

Balcony Deflections

Formwork for in-situ balconies and pre-cast balconies must be given appropriate precamber so that, once props have been removed after the concrete has reached appropriate strength, the balcony is inclined in the correct direction and to the correct slope.

Ancon can advise on calculated deflections upon receipt of relevant design data.

Local Reinforcement - Main reinforcement omitted for clarity

- A = H6 Grade B500B straight
- B = H8 Grade B500B, minimum length 320mm, U-bar (one for each compression stud)
- Overlapping bars must be determined by the project engineer
- Under no circumstances should lsotec elements be modified after manufacture. Bars should neither be bent nor cut without prior authorisation from Ancon.

Corner Details

To avoid a reinforcement clash at corners, 20mm thick mineral wool make-up strips are typically detailed on the lsotec units installed locally at the corner. The corner units should be specified shorter in height than those used elsewhere in the slab. The filler pieces are supplied glued to the top and bottom respectively of the adjacent lsotec corner units.

Alternatively, if sufficient time is provided, special full height lsotec corner units can be manufactured that feature offset tension and shear bars to avoid clashes with adjacent units, eliminating the need for infill pieces.

Movement Joints

The maximum allowable uninterrupted length of balcony to be supported by lsotec units, before a movement joint is required, is given in the table in metres. At corners, the distance is half the lengths given.

Bar Diameter (mm) ≤10 12 14 16 Joint Centres, L (m) 13.00 11.30 10.10 9.20

Installation Guidance

Prior to installation, ensure all lsotec elements have not been damaged during transit or site handling and that they correspond to the project specification.

Step 1

Place the lsotec system on the formwork in line with the project drawings, ensuring all lsotec elements are positioned and orientated as indicated on the product label.

Step 2

Position all necessary local and main reinforcement. Secure each lsotec unit to the slab reinforcement. Any gaps between lsotec elements must be filled with equivalent insulating material. Concrete should be poured adjacent to the lsotec system and simultaneously to either side to avoid any displacement.

Step 3

Concrete should be poured adjacent to the lsotec system and simultaneously to either side to avoid any displacement.

Precast applications

If lsotec elements are used in precast balconies, lifting systems must be positioned within the gaps between lsotec elements. Ensure the compression studs do not apply pressure on an internal structure already in position.

Ancon STC

The STC system is used for anchoring steel balconies to concrete floor slabs and has been proven through thermal modelling to reduce heat loss when compared to direct connections.

The two part assembly, comprising a cast-in anchorage and a post-fixed bracket with thermal pad located at the interface, allows for phased construction. Unlike one-piece systems which are left exposed on-site, the STC bracket component is not fixed until required reducing the risk of damage.

Manufactured to order, the bracket depth can be designed to suit the exact requirements of the application and avoid conflicts with the external cladding. Serrated pads and slots provide adjustability in the final bracket position without the need for stop butts or levelling shims.

Anchor bars are Grade B500B and are supplied fixed to Duplex stainless steel couplers. A stainless steel nail plate completes the assembly and features notches indicating the centreline, normally located on the centreline of the slab, to ease accurate installation.

The fabricated brackets are manufactured from hot-dip galvanised S355 plain carbon steel as standard and can be supplied in stainless steel for applications requiring enhanced corrosion protection such as coastal areas. They are designed to EN 1993 (Eurocode 3) and CE-marked to EN 1090 Part 1.

505mm

Anchorage

Spacing

82

107

132

157

725mm for slabs ≤ 250mm 1005mm for slabs > 250mm

Anchorage

Spacing

ŧ

130

150

150

150

Thermal modelling of a typical application using Ancon STC connectors confirmed that the temperature factor was within the limits detailed in BRE document IP1/06 for eliminating condensation risk in dwellings, residential buildings and schools (0.75).

System Benefits

- Proven through thermal modelling to reduce heat loss
- Two-part assembly allows phased installation and avoids damage by other trades
- Simple nailplate design avoids cutting of formwork around the connector
- ✓ Variable bracket projection to suit wall construction and avoid conflict with cladding
- Serrated slots provide adjustability on-site for fine tuning of balcony without levelling shims
- Bracket fabrication CE marked to BS EN 1090-1

Faceplate Cross Section of Connector

Projection to be specified

Height

150

175

200

225

Fixing

Centres

С

66

91

116

141

Product Referencing System

STC16-150-320

Standard Product Reference Bracket Projection (Dimension from concrete face to inside face of balcony)

Dimensions shown for carbon steel brackets. Stainless steel dimensions available on request.

Fixing

Centres

b

130

150

150

150

STC System Dimensions

Product

Reference

STC16-150

STC16-175

STC16-200

STC16-225

Width

а

184

204

204

204

Design Resistances

The following tables may be used to select the appropriate standard system. They are based on a C32/40 concrete. For other concrete strengths, please contact Ancon.

Ancon's Technical Services Team can advise on STC system design and operate in-house design software to provide recommendations for specific project requirements.

Design Example

Known requirements:

The Factored Ultimate Shear Capacity per connector, V_{Ed}, is 50kN. The Factored Ultimate Moment per connector, M_{Ed}, is 18kNm.

The slab thickness is 275mm and the concrete grade is C32/40

The connector spacing is 750mm

From the tables:

- X STC16-150 does not give the required capacities in a 275mm thick slab
- \checkmark STC16-175 gives V_{Rd} = 50 kN and M_{Rd} = 16.30 kNm, so does not give the required capacity
- \checkmark STC16-200 gives V_{Rd} = 50 kN, M_{Rd} = 18.15 kNm and minimum connector centres < 750mm

X STC16-225 gives V_{Rd} = 50 kN and M_{Rd} = 20.00 kNm and minimum connector centres > 750mm

				o nu	nu				
STC16-150 Design Shear	Minimum	Minimum			Design I	Resistance for Be	nding M _{Rd} (kNm)		
Resistance V _{Rd} (kN)	Connector Centres (mm)	Slab Edge Distance (mm)	175mm slab	200mm slab	225mm slab	250mm slab	275mm slab	300mm slab	325mm slab
36.02	520 Centres	260	13.75	13.75	13.75	13.75	13.75	13.75	13.75
39.21	560 Centres	280	-	13.75	13.75	13.75	13.75	13.75	13.75
41.68	595 Contros	300	-	-	13.75	13.75	13.75	13.75	13.75
42.47	- 000 Oentres -		-	-	13.61	13.61	13.61	13.61	13.61
45.81	630 Centres	315	-	-	-	13.03	13.03	13.03	13.03
49.21	670 Centres	335	-	-	-	-	12.43	12.43	12.43
50.00	710 Controp	255	-	-	-	-	-	12.30	12.30
52.70	- 710 Genties -		-	-	-	-	-	11.83	11.83
55.00	750 Contros	275	-	-	-	-	-	-	11.42
56.25	- rou centres -		-	-	-	-	-	-	11.21

STC16-175

51010-175									
Design Shear	Minimum	Minimum			Design I	Resistance for Be	nding M _{Rd} (kNm)		
Resistance	Connector	Slab Edge	200mm	225mm	250mm	275mm	300mm	325mm	350mm
V _{Rd} (kN)	Centres (mm)	Distance (mm)	slab	slab	slab	slab	slab	slab	slab
42.09	615 Centres	310	18.13	18.13	18.13	18.13	18.13	18.13	18.13
43.91		010	17.70	17.70	17.70	17.70	17.70	17.70	17.70
45.00	650 Contros	205	-	17.45	17.45	17.45	17.45	17.45	17.45
47.27	- 000 Centres -		-	16.93	16.93	16.93	16.93	16.93	16.93
50.00	600 Contros	245	-	-	16.30	16.30	16.30	16.30	16.30
50.70	- 030 Oentres -		-	-	16.14	16.14	16.14	16.14	16.14
54.20	730 Centres	365	-	-	-	15.33	15.33	15.33	15.33
55.00	765 Contros	295	-	-	-	-	15.14	15.14	15.14
57.77	- 703 Genties -		-	-	-	-	14.50	14.50	14.50
60.00	800 Contros	400	-	-	-	-	-	13.99	13.99
61.40	- 000 Centres 400		-	-	-	-	-	13.66	13.66
65.10	840 Centres	420	-	-	-	-	-	-	12.81

STC16-200

Design Shear	Minimum	Minimum	Design Resistance for Bending M _{Rd} (kNm)									
Resistance V _{Rd} (kN)	Connector Centres (mm)	Slab Edge Distance (mm)	225mm slab	250mm slab	275mm slab	300mm slab	325mm slab	350mm slab	375mm slab			
41.70			20.29	20.29	20.29	20.29	20.29	20.29	20.29			
45.00		0.45	19.44	19.44	19.44	19.44	19.44	19.44	19.44			
50.00	- 690 Centres -	340	18.15	18.15	18.15	18.15	18.15	18.15	18.15			
50.70			17.97	17.97	17.97	17.97	17.97	17.97	17.97			
54.20	730 Centres	365	-	17.07	17.07	17.07	17.07	17.07	17.07			
55.00	770 Controp	205	-	-	16.86	16.86	16.86	16.86	16.86			
57.77	- 110 Centres -		-	-	16.15	16.15	16.15	16.15	16.15			
60.00	900 Controp	400	-	-	-	15.58	15.58	15.58	15.58			
61.40	- ooo centres -	400	-	-	-	15.22	15.22	15.22	15.22			
65.00	940 Controp	400	-	-	-	-	14.29	14.29	14.29			
65.10	- 640 Centres -	420	-	-	-	-	14.27	14.27	14.27			
68.85	880 Centres	440	-	-	-	-	-	13.30	13.30			
70.00	020 Controp	460	-	-	-	-	-	-	13.01			
72 67	- 920 Genilies -	400	-	-	-	_	-	_	12.32			

STC16-225

Design Shear	Minimum	Minimum	Design Resistance for Bending M _{Bd} (kNm)								
Resistance	Connector	Slab Edge	250mm	275mm	300mm Ŭ	325mm	350mm	375mm	400mm		
V _{Rd} (kN)	Centres (mm)	Distance (mm)	slab	slab	slab	slab	slab	slab	slab		
41.70			22.36	22.36	22.36	22.36	22.36	22.36	22.36		
45.00			21.42	21.42	21.42	21.42	21.42	21.42	21.42		
50.00	765 Centres	385	20.00	20.00	20.00	20.00	20.00	20.00	20.00		
55.00			18.59	18.59	18.59	18.59	18.59	18.59	18.59		
57.77			17.82	17.82	17.82	17.82	17.82	17.82	17.82		
60.00	900 Contros	400	-	17.17	17.17	17.17	17.17	17.17	17.17		
61.40	- ooo centres -	400	-	16.77	16.77	16.77	16.77	16.77	16.77		
65.00	945 Controp	105	-	-	15.75	15.75	15.75	15.75	15.75		
65.10	- 645 Centres -	420	-	-	15.72	15.72	15.72	15.72	15.72		
68.85	875 Centres	440	-	-	-	14.66	14.66	14.66	14.66		
70.00	015 Contros	460	-	-	-	-	14.33	14.33	14.33		
72.66	- 910 Centres -	400	-	-	-	-	13.58	13.58	13.58		
75.00	950 Centres	475	-	-	-	-	-	12.92	12.92		
76.53	- 500 Ochiros -		-	-	-	-	-	12.48	12.48		
80.00	- 000 Contros	405	-	-	-	-	-	-	11.50		
80.46	- aao centres -	490	-	-	-	-	-	-	11.37		

See local reinforcement requirements on pages 24 and 25 and corner details on page 26. Tables refer to carbon steel brackets. Design resistances for stainless steel brackets are available on request.

Type 1

Local Reinforcement

Local reinforcement is required around each STC connector to guarantee that the forces are transferred between the connector and the concrete. Correct detailing in accordance with appropriate design codes and the recommendations provided here will ensure Ancon STC Connectors attain their full capacity. The tables show proposals for the type and spacing of U-Bars each side of the connector together with details of reinforcement above and below the connectors.

Minimum Slab Depths for a Straight Run Minimum Slab Depth (mm)

Connector Reference	Type 1 Reinforcement	Type 2 Reinforcement
STC16-150	200	175
STC16-175	225	200
STC16-200	250	225
STC16-225	275	250

ī.	-	-	_	_	-	_	-		-	_	_	-	-	_	-		-	-	_		_	-	-	-
1	E			= =	_0	2			-	2	-		-		=		-	-	-			-	-	_
1	P.4								-				-		-		-		-			-	-	
-	Ŀ						_			_		-			-	_				-				
1																								
- 1	t.	-		55			-		-		-		-		Ξ		-	-	÷					
1	\leq			_	_	_	-	-	_	_	_	_	-		-	-		_	_	_		_	_	_

Type 2

	1	
 	· <u>+= -= -= -= -</u>	
 +*	· • • ·	
	1	

 		 · ·	
 	0	 	

U-Bars

STC16-150	U-Bar requirements for different diameter bars												
		H10 Bars			H12 Bars		H16 Bars						
Slab Depth (mm)	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration				
175	2	615	Type 2	2	705	Type 2	1	875	Type 2				
200	2	700	Type 1	2	770	Type 1	1	930	Type 2				
225	2	745	Type 1	2	825	Type 1	1	985	Type 1				
250	2	920	Type 1	2	1030	Type 1	1	1260	Type 1				
275	2	975	Type 1	2	1085	Type 1	1	1305	Type 1				
300	2	1020	Type 1	2	1130	Type 1	1	1360	Type 1				
325	2	1075	Type 1	2	1185	Type 1	1	1405	Type 1				

STC16-175 U-Bar requirements for different diameter bars H10 Bars H12 Bars H16 Bars Slab Number of U-Bars Min U-Bar Number of U-Bars Min U-Bar Number of U-Bars Min U-Bar Depth Each Side Leg Length Reinforcement Each Side Leg Length Reinforcement Each Side Leg Length Reinforcement Configuration of Connector Configuration of Connector (mm) (mm) (mm) Configuration of Connector (mm) 200 660 Type 2 760 Type 2 930 Type 2 2 225 745 Type 1 825 Type 1 975 Type 2 1 250 2 920 2 1030 Type 1 1260 Type 1 Type 1 275 2 975 2 1085 1305 Type 1 Type 1 1 Type 1 300 2 2 1020 1130 1360 Type 1 Type 1 1 Type 1 325 2 1075 Type 1 2 1185 Type 1 1 1405 Type 1 350 1120 Type 1 1230 Type 1 1460 Type 1 1

STC16-200	U-Bar requirements for different diameter bars												
		H10 Bars			H12 Bars			H16 Bars					
Slab Depth (mm)	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration				
225	2	715	Type 2	2	805	Type 2	1	975	Type 2				
250	2	920	Type 1	2	1030	Type 1	1	1250	Type 2				
275	2	975	Type 1	2	1085	Type 1	1	1305	Type 1				
300	2	1020	Type 1	2	1130	Type 1	1	1360	Type 1				
325	2	1075	Type 1	2	1185	Type 1	1	1405	Type 1				
350	2	1120	Type 1	2	1230	Type 1	1	1460	Type 1				
375	2	1175	Type 1	2	1285	Type 1	1	1505	Type 1				

STC16-225	U-Bar requirements for different diameter bars												
		H10 Bars			H12 Bars		H16 Bars						
Slab Depth (mm)	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration	Number of U-Bars Each Side of Connector	Min U-Bar Leg Length (mm)	Reinforcement Configuration				
250	2	870	Type 2	2	1000	Type 2	1	1250	Type 2				
275	2	975	Type 1	2	1085	Type 1	1	1305	Type 2				
300	2	1020	Type 1	2	1130	Type 1	1	1360	Type 1				
325	2	1075	Type 1	2	1185	Type 1	1	1405	Type 1				
350	2	1120	Type 1	2	1230	Type 1	1	1460	Type 1				
375	2	1175	Type 1	2	1285	Type 1	1	1505	Type 1				
400	2	1220	Type 1	2	1330	Type 1	1	1560	Type 1				

Longitudinal bars

STC16-150	Number of Longitudinal bars required in the top and bottom of the slab, for various connector centres												
			H10 Ba	rs		-		H12 Bars					
Slab Depth (mm)	600 mm	800 mm	1000 mm	1200 mm	1500 mm	2000 mm	600 mm	800 mm	1000 mm	1200 mm	1500 mm	2000 mm	600 - 2000 mm
175	2	2	2	2	2	2	2	2	2	2	2	2	2
200	2	2	2	2	2	2	2	2	2	2	2	2	2
225	2	2	2	2	2	2	2	2	2	2	2	2	2
250	2	2	2	2	2	2	2	2	2	2	2	2	2
275	2	2	2	2	2	2	2	2	2	2	2	2	2
300	2	2	2	3	3	3	2	2	2	2	2	2	2
325	3	3	3	3	3	3	2	2	2	2	2	2	2

STC16-175 Number of Longitudinal bars required in the top and bottom of the slab, for various connector centres													
			H10 Ba	rs			H12 Bars						H16 Bars
Slab Depth	600	800	1000	1200	1500	2000	600	800	1000	1200	1500	2000	600 - 2000
(mm)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
200	2	2	2	2	2	2	2	2	2	2	2	2	2
225	2	2	2	2	2	2	2	2	2	2	2	2	2
250	2	2	2	2	2	2	2	2	2	2	2	2	2
275	2	2	2	2	2	2	2	2	2	2	2	2	2
300	2	2	2	2	2	2	2	2	2	2	2	2	2
325	3	3	3	3	3	3	2	2	2	2	2	2	2
350	3	3	3	3	3	3	2	2	2	2	2	3	2

STC16-200		Number of Longitudinal bars required in the top and bottom of the slab, for various connector centres											
-			H10 Ba	rs			H12 Bars						H16 Bars
Slab Depth (mm)	600 mm	800 mm	1000 mm	1200 mm	1500 mm	2000 mm	600 mm	800 mm	1000 mm	1200 mm	1500 mm	2000 mm	600 - 2000 mm
225	2	2	2	2	2	2	2	2	2	2	2	2	2
250	2	2	2	2	2	2	2	2	2	2	2	2	2
275	2	2	2	2	2	2	2	2	2	2	2	2	2
300	2	2	2	3	3	3	2	2	2	2	2	2	2
325	3	3	3	3	3	3	2	2	2	2	2	2	2
350	3	3	3	3	3	3	2	2	2	2	2	3	2
375	3	3	3	3	3	3	2	3	3	3	3	3	2

STC16-225			Number of Longitudinal bars required in the top and bottom of the slab, for various connector centres										
			H10 Bars					H12 Bars					
Slab Depth (mm)	600 mm	800 mm	1000 mm	1200 mm	1500 mm	2000 mm	600 mm	800 mm	1000 mm	1200 mm	1500 mm	2000 mm	600 - 2000 mm
250	2	2	2	2	2	2	2	2	2	2	2	2	2
275	2	2	2	2	2	2	2	2	2	2	2	2	2
300	2	2	2	3	3	3	2	2	2	2	2	2	2
325	3	3	3	3	3	3	2	2	2	2	2	2	2
350	3	3	3	3	3	4	2	2	2	2	2	3	2
375	3	3	4	4	4	4	2	3	3	3	3	3	2
400	4	4	4	4	4	4	3	3	3	3	3	3	2

Note:

Tables based on the following assumptions;

Grade C32/40 Concrete

Connectors assumed to be at mid depth of slab.

The maximum moment for each connector type is assumed.

Reinforcement is based on a minimum concrete cover of 20mm

Mandrel diameter for the U bars is assumed to conform to the figures given in Table 8.1N of BS EN 1992-1-1:2004

It is assumed that the U bars and the longitudinal bars are of the same diameter.

Length of longitudinal bars should be a minimum of the connector spacing + a lap length, determined in accordance with BS EN 1992-1

Spacing of U-Bar Reinforcement

Values given in adjacent table assume:-
Cover, c _{nom} = 20mm
Concrete grade C32/40
Reinforcement diameter 12mm (u-bar and

longitudinal bars)

Reinforcement arrangement type 1

U-Bar Spacing		
	e ₁ (mm)	e ₂ (mm)
STC16-150	60	80
STC16-175	60	85
STC16-200	50	85
STC16-225	50	85

Corner Details

Standard STC corner units are available which offset the position of the anchor bars on adjacent connectors by 25mm, eliminating a reinforcement clash. The corresponding bracket assemblies feature an extended fixing plate on one side to bring the balcony fixing position back in line with the standard STC connectors used in the rest of the slab.

Due to the offset, the minimum slab depth for these corner units is deeper than that for a straight run and is given in the table. The offset also affects the unit performance. The four graphs show the moment and shear resistance for each STC corner unit in relation to the distance from the corner and also when the loads become the same as for the standard connector.

The notches in an STC nailplate are used to indicate the fixing line, normally the centreline of the slab. On STC corner units, these notches are offset by +/-12.5mm respectively to create the 25mm difference in fixing height at the corner.

Minimum Slab Depths at Corners

Connector Reference	Minimum Slab Depth (mm)	
STC16-150	225	
STC16-175	250	
STC16-200	275	
STC16-225	300	

Min V_{Rd} (kN) Max M_{Rd} (kNm)

Installation

Ancon STC balcony connectors are quick and easy to install. Installation is a two phase process. These steps are provided as guidance. Products are supplied to site with an installation guide.

The STC system consists of two components; a cast-in anchorage and a fabricated bracket with thermoset thermal plate.

Cast-in Anchorage

Nail the assembly to the formwork. The end of the reinforcement cage should be supported on spacers or tied to adjacent slab reinforcement. Fix secondary reinforcement and cast concrete. Allow to cure and strike formwork.

Bracket/Thermal Plate Section

Remove plastic plugs from couplers, offer up thermal plate and then fabricated bracket. The labels on the connector identify the balcony and concrete slab side, as well as the orientation of the connector.

Install the four M16, 40mm long, stainless steel setscrews and washers and hand tighten.

Tighten to a torque of 170Nm using a calibrated torque wrench. The thermal plate is now sandwiched between the bracket and the concrete.

Balcony

Offer up the steel balcony and connect to the STC bracket with the four M16, 60mm long galvanised hex head setscrews as follows:

- The top bolts must have the two galvanised square plate washers over the plain slots in the STC connector
- The bottom bolts must have the two galvanised serrated washers over the serrated slots in the STC connector, orientated to mate and not turned at an angle or installed using the plain side
- Four galvanised washers are provided for the balcony side of the connection, however if the balcony is slotted a plate washer should be used
- The balcony can be levelled vertically using the adjustment provided by the vertical slots in the connector.
- Should minor adjustments to the angle of the balcony be required, for example due to the concrete face being out of plumb, then shims should be installed between the balcony and the connector at this stage. Shims are available from Ancon and must not exceed 10mm thickness.
- Adjustment must not be made between the connector and the thermal break or between the thermal break and the concrete slab edge.
- Hand tighten the four connection bolts and then torque to 170Nm using a calibrated torque wrench.

fixing stud

The STS connector comprises tension and compression components within a single combined and compact unit, wrapped in polystyrene insulation. It features four A4 stainless steel fixing studs and a thermoset plate is located at each steel interface. The fabricated compression component is supplied in hot dipped galvanised steel as standard and can be supplied in stainless steel on request.

STS connectors are designed to EN 1993 (Eurocode 3) and CE marked to CE BS EN 1090 Part 1.

"For structure supported balconies, the heat losses at the thermal bridge between the structural frame of the building and the balcony can be significantly reduced by using a proprietary product."

SCI P380, Avoidance of Thermal Bridging in Steel Construction

Polystyrene insulation

Thermal Pad

System Benefits

- ✓ Thermal plates at each steel interface
- ✓ Proven through thermal modelling to reduce heat loss
- ✓ Typically reduces heat loss by 50%, compared to direct steel connections
- Bracket fabrication CE marked to BS EN 1090-1
- ✓ Variable fixing heights to suit application
- ✓ A4-grade stainless steel fixings for enhanced corrosion protection

Ancon STS

The STS system is a compact thermal break, typically used for connecting steel balconies to structural steel frames but is equally suitable for other steel-to-steel applications. It is available in three standard stud sizes to accommodate a wide range of loads. Manufactured to order, the vertical centres of the fixing studs can be specified to suit the exact requirements of the application. Thermal modelling of a typical STS application showed a reduction in heat loss of almost 50% compared to a direct steel connection. It also illustrated a temperature factor within the limits detailed in BRE document IP1/06 for eliminating condensation risks in dwellings, residential buildings and schools (0.75).

STS System Dimensions

Product Reference	w	Α	в	с	D	Е	F
STS 16	180	40	100	30	40	24 A/F	M16
STS 20	180	40	100	30	40	30 A/F	M20
STS 24	190	37.5	115	40	45	36 A/F	M24

uct Referencing System

STS 16-140 lard Product Reference

Vertical Bolt Centres Required

Design Resistances

STS16

Vertical Bolt Centres	Design Shear Resistance V _{Rd} (kN)	Design Resistance for Bending M _{Rd} (kNm)	Design Resistance for Tension N _{Rd} (kN)
70mm		12.66	
75mm		13.56	
100mm	85.7	18.08	
125mm		22.60	
150mm		27.12	
175mm		31.65	
200mm		36.17	180.9
225mm		40.69	
250mm		45.21	
275mm		49.73	
300mm		54.25	
325mm		58.78	
350mm		63.30	

STS20

Vertical Bolt Centres	Design Shear Resistance V _{Rd} (kN)	Design Resistance for Bending M _{Rd} (kNm)	Design Resistance for Tension N _{Rd} (kN)
70mm	85.7	19.75	
75mm		21.16	
100mm		28.22	
125mm		35.28	
150mm		42.33	
175mm		49.39	
200mm		56.44	282.2
225mm		63.50	
250mm		70.55	
275mm		77.61	
300mm		84.66	
325mm		91.72	
350mm		98.77	

STS24

Vertical Bolt Centres	Design Shear Resistance V _{Rd} (kN)	Design Resistance for Bending M _{Rd} (kNm)	Design Resistance for Tension N _{Rd} (kN)
85mm	87.6	34.56	
100mm		40.66	
125mm		50.82	
150mm		60.99	
175mm		71.15	
200mm		81.32	406.0
225mm		91.49	400.0
250mm		101.65	
275mm		111.82	
300mm		121.99	
325mm		132.15	
350mm		142.32	

Note: Design resistances stated show combined shear and tension.

Design Example

Known requirements:

The Factored Ultimate Shear Capacity per connector, V_{Ed} is 75kN. The Factored Ultimate Moment per connector, M_{Ed}, is 45kNm. Vertical bolt centres are limited to a maximum of 150mm

From the tables:

X	STS16 at 150mm centres gives $V_{Rd} = 85.7$ kN and $M_{Rd} = 27.12$ kNm	These connectors do not give the required capacity
X	STS20 at 150mm centres gives V_{Rd} = 85.7kN and M_{Rd} = 42.33kNmJ	о т т,

 \checkmark STS24 at 150mm centres gives V_{Rd} = 87.6kN and M_{Rd} = 60.99kNm. This connector meets the project requirements

29

Installation

The STS Balcony Connector is supplied in a single unit with thermal plates attached to both inner and outer faces. These plates should not be removed. The assembly features all necessary nuts and washers. Care should be taken to avoid damaging any balcony connector components prior to and during installation.

It is essential that the connector is orientated and installed correctly.

Pre-installation Checks

Prior to installation of the connector, it is important to check the product dimensions against the engineer's drawings, specifically ensuring the mating parts match the connector stud centres.

Installation

The following steps are provided as general guidance.

The STS Balcony Connector should be orientated so that the label indicating the uppermost face is correctly positioned and is facing out of the building.

Position the connector close to where it is to be installed. Ensure the connector is stable and not likely to fall. Carefully remove the nuts and washers from the studs on the inner face. Keep the nuts and washers close to hand. Carefully lift and fit the exposed studs through the appropriate holes in the building structure. Do not force the connector into position. Re-fit the washers and nuts.

Once the connector is fully aligned with the structure, torque up the nuts with a calibrated torque wrench and suitable socket.

	STS 16	STS 20	STS 24	
Wrench Size (A/F)	24	30	36	
Torque (Nm)	148	288	498	

Once all connectors are correctly positioned and fitted to the building structure, the balcony beams can be installed.

Remove the nuts and washers from the outer face of the connector and keep close to hand.

Carefully lift the balcony fabrication, ensuring the balcony is horizontal. Align the balcony and carefully push over the exposed studs. Do not force it into position.

When positioned, re-fit the washers and nuts.

Once the balcony is fully aligned with the connector and structure, tighten the nuts to the correct torque. Remove all lifting straps.

For BIM objects of the above products visit www.ancon.co.uk or www.NationalBIMLibrary.com/Ancon

Other Ancon Products

Wall Ties and Restraint Fixings

Wall Ties are an essential element in the strength and stability of a cavity wall, however, by crossing the insulated cavity they act as a thermal bridge between the internal and external leaves. Ancon manufactures a range of low thermal conductivity wall ties to minimise the effects of thermal bridging. The Ancon range offers reduced heat transmittance whilst continuing to meet the structural performance requirements of multi-storey and wide cavity construction. Products include slender Staifix stainless steel wire ties and the Ancon TeploTie manufactured from basalt fibres with a thermal conductivity of just 0.7WmK.

Masonry Support Systems

Masonry cladding on concrete or steel frames is normally supported from stainless steel support systems. The standard AnconOptima system and the bespoke Ancon MDC System create a continuous angle to support the outer leaf of masonry. Ancon Individual Brackets support masonry features such as curves and arches. Ancon support brackets can now be supplied with a thermal break to minimise heat loss through cold bridging at the interface with the structure. The standard thermal break is shaped like a key-hole shim to allow it to be located quickly on site.

Tension Systems

Tie bars are increasingly being used in structures and buildings as an architectural as well as a structural element. Ancon Tension Systems comprise a range of components which can be supplied in carbon steel or stainless steel in a variety of sizes and finishes. A variety of assemblies can be created from simple tie bars to complex bracing systems involving several bars joined at one point. The Ancon 500 System is CE marked to European Technical Approval ETA-06/0146.

Shear Load Connectors

Ancon DSD and ESD Shear Load Connectors are used to transfer shear across expansion and contraction joints in concrete. They are more effective at transferring load and allowing movement to take place than standard dowels. The range features rectangular box section sleeves to allow lateral movement in addition to longitudinal movement. A range of Lockable Dowels is available for temporary movement joints in post-tensioned concrete.

Punching Shear Reinforcement

Used within a slab to provide additional reinforcement around columns, Ancon Shearfix is the ideal solution to the design and construction problems associated with punching shear. The system consists of double-headed studs welded to flat rails, positioned around the column head or base.

Design

rograf

Masonry Support Systems Lintels Masonry Reinforcement Wall Ties and Restraint Fixings Channel and Bolt Fixings Tension and Compression Systems

Insulated Balcony Connectors

Shear Load Connectors Punching Shear Reinforcement Reinforcing Bar Couplers Reinforcement Continuity Systems Stainless Steel Fabrications Flooring and Formed Sections Refractory Fixings

Ancon Building Products President Way, President Park Sheffield S4 7UR United Kingdom Tel: +44 (0) 114 275 5224 Fax: +44 (0) 114 276 8543 Email: info@ancon.co.uk Visit: www.ancon.co.uk Follow on Twitter: @AnconUK

Ancon (Middle East) FZE

PO Box 17225 Jebel Ali Dubai United Arab Emirates Tel: +971 (0) 4 883 4346 Fax: +971 (0) 4 883 4347 Email: info@ancon.ae Visit: www.ancon.ae

Ancon Building Products 98 Kurrajong Avenue

Mount Druitť Sydney NSW 2770 Australia Tel: +61 (0) 2 8808 3100 Fax: +61 (0) 2 9675 3390 Email: info@ancon.com.au Visit: www.ancon.com.au

Ancon Building Products

2/19 Nuttall Drive Hillsborough Christchurch 8022 New Zealand Tel: +64 (0) 3 376 5205 Fax: +64 (0) 3 376 5206 Email: info@ancon.co.nz Visit: www.ancon.co.nz

Ancon (Schweiz) AG

Gewerbezone Widalmi 10 3216 Ried bei Kerzers Switzerland Tel: +41 (0) 31 750 3030 Fax: +41 (0) 31 750 3033 Email: info@ancon.ch Visit: www.ancon.ch

Ancon Building Products

GesmbH Puchgasse 1 A-1220 Vienna Austria Tel: +43 (0) 1 259 58 62-0 Fax: +43 (0) 1 259 58 62-40 Email: info@ancon.at Visit: www.ancon.at

Ancon GmbH

Bartholomäusstrasse 26 90489 Nuremberg Germany Tel: +49 (0) 911 955 1234 0 Fax: +49 (0) 911 955 1234 9 Email: info@anconbp.de Visit: www.anconbp.de

These products are available from:

The construction applications and details provided in this literature are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons.

Whilst every care has been exercised in the preparation of this document to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted in respect of Ancon Building Products.

With a policy of continuous product development Ancon Building Products reserves the right to modify product design and specification without due notice.

© Ancon Building Products 2014

ISO 14001 Environment Managemen

